精英家教网 > 高中数学 > 题目详情

已知过点的直线与椭圆相交于不同的两点A、B,点M是弦AB的中点, 则的最小值为  (    )

A.             B.               C.  1             D.

 

【答案】

A

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年北京市海淀区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,右焦点为,右顶点在圆上.

(Ⅰ)求椭圆和圆的方程;

(Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省、二中高三上学期期末联考理科数学卷(解析版) 题型:解答题

已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.

(1)求椭圆的标准方程;

(2)已知过点的直线与椭圆交于两点.

① 若直线垂直于轴,求的大小;

② 若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期2月月考理科数学试卷 题型:解答题

(本题满分15分)已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知过点的直线与椭圆交于两点.

(ⅰ)若直线垂直于轴,求的大小;

(ⅱ)若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届北京市高一第一学期期末考试数学 题型:解答题

(本小题满分14分)

已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知过点的直线与椭圆交于两点.

(ⅰ)若直线垂直于轴,求的大小;

(ⅱ)若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

 

 

查看答案和解析>>

同步练习册答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘