(满分12分)如图,
是海面上位于东西方向相距
海里的两个观测点,现位于
点北偏东
,
点北偏西
的
点有一艘轮船发出求救信号,位于
点南偏西
°且与
点相距
海里的
点的救援船立即即前往营救,其航行速度为
海里/小时,该救援船到达
点需要多长时间?
![]()
该救援船到达
点需要1小时。
【解析】本题考查了正弦定理与余弦定理.准确找出题中的方向角是解题的关键之处.
在△DAB中,由正弦定理得DB:sin∠DAB =AB: sin∠ADB ,由此可以求得DB=10 3
海里;然后在△DBC中,由余弦定理得CD2=BD2+BC2-2BD•BC•cos∠DBC=900,即CD=30海里;最后根据时间=路程 :速度 即可求得该救援船到达D点需要的时间.
解 由题意知
=
海里,
∠ DBA=90°—60°=30°,∠ DAB=90°—45°=45°,……2分
∴∠ADB=180°—(45°+30°)=105°,……3分
在△ADB中,有正弦定理得
……5分
![]()
即
……7分
在△BCD中,有余弦定理得:
……9分
=![]()
=900
即
海里……10分
设所需时间为
小时,则
小时……11分
答:该救援船到达
点需要1小时……12分
科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题
(本题满分12分)
如图3,在圆锥
中,已知
的直径
的中点.
(I)证明:![]()
(II)求直线和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学文卷 题型:解答题
(本题满分12分)
如图,有一正方形钢板
缺损一角(图中的阴影部分),边缘线
是以直线AD为对称轴,以线段
的中点
为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线
,可使剩余的直角梯形的面积最大?并求其最大值.
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学文卷 题型:解答题
(本小题满分12分)
如图,在四棱锥
中,
,
,
,平面
平面
,
是线段
上一点,
,
,
.
(1)证明:
平面
;
(2)设三棱锥
与四棱锥
的体积分别为
与
,求
的值.
![]()
查看答案和解析>>
科目:高中数学 来源:岳阳市2010届高三第四次质检考试(数学文)试题 题型:解答题
(本小题满分12分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。
![]()
(1)求三棱锥P-ABC的体积;
(2)求异面直线PA与BD所成角余弦值的大小。
查看答案和解析>>
科目:高中数学 来源:2012届贵州省高二下学期期末考试理科数学 题型:解答题
(本小题满分12分)如图,在棱长为2的正方体
的中点,P为BB1的中点.
(I)求证
;
(II)求异面直线
所成角的大小;
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com