【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为求:(1)甲恰好击中目标2次的概率;(2)乙至少击中目标2次的概率;
(3)乙恰好比甲多击中目标2次的概率
【答案】(1)(2);(3)
【解析】试题分析:(1)由题意知甲射击三次,每次击中目标的概率是定值,可以看作是独立重复试验,根据独立重复试验的公式得到结果;(2)乙射击三次,每次击中目标的概率是定值,可以看作是独立重复试验,乙至少击中目标两次包含击中两次和击中三次,且这两种情况是互斥的,根据公式得到结果;(3)乙恰好比甲多击中目标次,包含乙恰击中目标次且甲恰击中目标零次或乙恰击中目标三次且甲恰击中目标一次,由题意,为互斥事件.根据互斥事件和独立重复试验公式得到结果.
试题解析:(1)甲恰好击中目标2次的概率为
(2)乙至少击中目标2次的概率为
(3)设乙恰好比甲多击中目标2次为事件A,乙恰好击中目标2次且甲恰好击中目标0次为事件B1,乙恰好击中目标3次且甲恰好击中目标1次为事件B2,则A=B1+B2,B1,B2为互斥事件
P(A)=P(B1)+P(B2)
所以,乙恰好比甲多击中目标2次的概率为
科目:高中数学 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).
(1)求关于的函数关系式;
(2)若,求当下潜速度取什么值时,总用氧量最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知右焦点为的椭圆过点,且椭圆关于直线对称的图形过坐标原点.
(1)求椭圆的方程;
(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称点为,证明:直线与轴的交点为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图:记成绩不低于70分者为“成绩优良”.
(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并大致判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
附:
独立性检验临界值表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等式:sin25°+cos235°+sin 5°cos 35°= ,
sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此归纳出对任意角度θ都成立的一个等式,并予以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修44:坐标系与参数方程
在直角坐标系中,直线经过点,其倾斜角为,在以原点为极点, 轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为.
(Ⅰ)若直线与曲线C有公共点,求的取值范围;
(Ⅱ)设为曲线C上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求实数m的取值范围;
(2)当x∈R时,不存在元素x使x∈A与x∈B同时成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在坐标原点,焦点在轴上,焦点到短轴端点的距离为2,离心率为.
(Ⅰ)求该椭圆的方程;
(Ⅱ)若直线与椭圆交于, 两点且,是否存在以原点为圆心的定圆与直线相切?若存在求出定圆的方程;若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com