精英家教网 > 高中数学 > 题目详情
设函数(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是( )
A.[1,e]
B.[1,1+e]
C.[e,1+e]
D.[0,1]
【答案】分析:根据题意,问题转化为“存在b∈[0,1],使f(b)=f-1(b)”,即y=f(x)的图象与函数y=f-1(x)的图象有交点,且交点的横坐标b∈[0,1].由y=f(x)的图象与y=f-1(x)的图象关于直线y=x对称,得到函数y=f(x)的图象与y=x有交点,且交点横坐标b∈[0,1].因此,将方程化简整理得ex=x2-x+a,记F(x)=ex,G(x)=x2-x+a,由零点存在性定理建立关于a的不等式组,解之即可得到实数a的取值范围.
解答:解:由f(f(b))=b,可得f(b)=f-1(b)
其中f-1(x)是函数f(x)的反函数
因此命题“存在b∈[0,1]使f(f(b))=b成立”,转化为
“存在b∈[0,1],使f(b)=f-1(b)”,
即y=f(x)的图象与函数y=f-1(x)的图象有交点,
且交点的横坐标b∈[0,1],
∵y=f(x)的图象与y=f-1(x)的图象关于直线y=x对称,
∴y=f(x)的图象与函数y=f-1(x)的图象的交点必定在直线y=x上,
由此可得,y=f(x)的图象与直线y=x有交点,且交点横坐标b∈[0,1],
根据,化简整理得ex=x2-x+a
记F(x)=ex,G(x)=x2-x+a,在同一坐标系内作出它们的图象,
可得,即,解之得1≤a≤e
即实数a的取值范围为[1,e]
故选:A
点评:本题给出含有根号与指数式的基本初等函数,在存在b∈[0,1]使f(f(b))=b成立的情况下,求参数a的取值范围.着重考查了基本初等函数的图象与性质、函数的零点存在性定理和互为反函数的两个函数的图象特征等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省高考数学试卷(理科)(解析版) 题型:选择题

设函数(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x,y)使得f(f(y))=y,则a的取值范围是( )
A.[1,e]
B.[e-1-1,1]
C.[1,e+1]
D.[e-1-1,e+1]

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:选择题

(5分)设函数(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是(  )

A.  [1,e]       B.   [e1﹣1,1]      C.   [1,e+1]  D.  [e1﹣1,e+1]

 

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(四川卷解析版) 题型:选择题

(5分)设函数(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是(  )

A.  [1,e]       B.   [1,1+e]  C.   [e,1+e]  D.  [0,1]

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数数学公式(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是


  1. A.
    [1,e]
  2. B.
    [1,1+e]
  3. C.
    [e,1+e]
  4. D.
    [0,1]

查看答案和解析>>

同步练习册答案