精英家教网 > 高中数学 > 题目详情
已知当x∈(-
π
6
,π)时,不等式cos2x-2asinx+6a-1>0恒成立,求实数a的取值范围(  )
A、[-
1
2
,1]
B、[-1,0]
C、[-
3
2
,0]
D、(
1
2
,+∞)
分析:先利用二倍角公式把题设不等式转化为关于sinx的一元二次不等式,求得sinx的范围,利用x的范围可求得sinx的范围,进而根据不等式恒成立推断出(-a-
1
2
a2+12a
)<2<-
1
2
<1<(a+
1
2
a2+12a
),进而求得a的范围.
解答:解:cos2x-2asinx+6a-1>0
∴1-2sin2x-2asinx+6a-1>0
∴sinx2+asinx-3a<0
∴sinx∈(-a-
1
2
a2+12a
),(a+
1
2
a2+12a

∵x∈(-
π
6
,π)∴sinx∈(-
1
2
,1)
∴(-a-
1
2
a2+12a
)<2<-
1
2
<1<(a+
1
2
a2+12a

∴a>
1
2

故选D.
点评:本题主要考查了三角函数的最值.考查了三角函数与不等式的综合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(
3
-1)c.
(1)求角A的大小;
(2)已知当x∈[
π
6
π
2
]时,函数f(x)=cos2x+asinx的最大值为3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
a
+
a-1
x
(a≠0且a≠1).
(Ⅰ)试就实数a的不同取值,写出该函数的单调递增区间;
(Ⅱ)已知当x>0时,函数在(0,
6
)
上单调递减,在(
6
,+∞)
上单调递增,求a的值并写出函数F(x)=
3
f(x)
的解析式;
(Ⅲ)记(Ⅱ)中的函数F(x)=
3
f(x)
的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
(a≠0且a≠1).
(1)试就实数a的不同取值,写出该函数的单调递增区间;
(2)已知当x>0时,函数在(0,
6
)
上单调递减,在(
6
,+∞)
上单调递增,求a的值并写出函数的解析式;
(3)(理)记(2)中的函数的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.
(文) 记(2)中的函数的图象为曲线C,试问曲线C是否为中心对称图形?若是,请求出对称中心的坐标并加以证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案