已知点P(x,y)是圆x2+y2=2y上的动点,
(1)求2x+y的取值范围;
(2)若x+y+a≥0恒成立,求实数a的取值范围.
分析:(1)先将圆的一般式方程转化成参数方程,然后代入所求的表达式中,利用辅助角公式求出取值范围即可;
(2)将圆的参数方程代入所求的关系式,将参数a分离出来,研究不等式另一侧的最值确保恒成立即可.
解答:解:(1)设圆的参数方程为
,
2x+y=2cosθ+sinθ+1=sin(θ+φ)+1∴
-+1≤2x+y≤+1.
(2)x+y+a=cosθ+sinθ+1+a≥0恒成立,
∴
a≥-(cosθ+sinθ)-1=-sin(θ+)-1,
∴
a≥-1.
点评:本题主要考查了圆的参数方程,以及恒成立问题和正弦函数的值域问题,属于基础题.