精英家教网 > 高中数学 > 题目详情
某工厂计划用甲、乙两台机器生产A、B两种产品,每种产品都要依次进行甲、乙机器的加工,已知生产一件A产品在甲、乙机器上加工的时间分别为2小时和3小时,生产一件B产品在甲、乙机器上加工的时间分别为4小时和2小时,甲、乙机器每周可分别工作180小时和150小时,若每件A产品的利润是40元,每件B产品的利润是60元,问此工厂应如何安排生产才能获得最大的利润(即如何确定一周内每种产品生产的数量).

解:设每周生产A产品x件,B产品y件,总利润为z元,则z=40x+60y.

列表整理条件:

 

A产品

B产品

时间限制

甲机器加工时间

2

4

180

乙机器加工时间

3

2

150

利润(元件)

40

60

 

由题意得线性约束条件

作出可行域(如上图),由求得交点A(30,30),在可行域内任取一点B,过B作直线40x+60y=0(2x+3y=0)的平行线l,平移直线l,当点B在点A处时,z最大,zmax=40×30+60×30=3 000(元)

答:每周生产A、B产品各30件时,总利润最大,为3 000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A、B两种规格的金属板,每张面积分别为2m2与3m2.用A种规格的金属板可造甲种产品3个,乙种产品5个;用B种规格的金属板可造甲、乙两种产品各6个.问A、B两种规格的金属板各取多少张,才能完成计划,并使总的用料面积最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A、B两种规格金属板,每张面积分别为

2 m2与3 m2.用A种规格金属板每张可造甲种产品3个,乙种产品5个;用B种规格金属板每张可造甲、乙两种产品各6个.问A、B两种规格金属板各取多少张,才能完成计划并使总的用料面积最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?

查看答案和解析>>

同步练习册答案