精英家教网 > 高中数学 > 题目详情

已知点(x,y)在直线x+2y=3上移动,则2x+4y的最小值是(  )

A.8                B.6                C.3            D.4

 

【答案】

D

【解析】

试题分析:根据题意,由于点(x,y)在直线x+2y=3上移动,则可知2x+4y ,当且仅当x=2y时取得等号,那么可知最小值为4,选D.

考点:基本不等式

点评:本题主要考查了基本不等式在最值问题中的应用.要利用好均值不等式及其变形的形式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面直坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,经过点(1,e),其中e为椭圆的离心率.且椭圆C与直线y=x+
3
有且只有一个交点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不经过原点的直线l与椭圆C相交与A,B两点,第一象限内的点P(1,m)在椭圆上,直线OP平分线段AB,求:当△PAB的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

一青蛙从点A0(x0,y0)开始依次水平向右和竖直向上跳动,其落点坐标依次是Ai(xi,yi)(i∈N*),(如图所示,A0(x0,y0)坐标以已知条件为准),Sn表示青蛙从点A0到点An所经过的路程.
(1)若点A0(x0,y0)为抛物线y2=2px(p>0)准线上一点,点A1,A2均在该抛物线上,并且直线A1A2经过该抛物线的焦点,证明S2=3p.
(2)若点An(xn,yn)要么落在y=x所表示的曲线上,要么落在y=x2所表示的曲线上,并且A0(
1
2
1
2
)
,试写出
lim
n→+∞
Sn
(不需证明);
(3)若点An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲线上,要么落在y=2
1+8x
+1
所表示的曲线上,并且A0(0,4),求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=e2+ax,g(x)=exlnx
(1)设曲线y=f(x)在x=1处得切线与直x+(e-1)y=1垂直,求a的值.
(2)若对任意实x≥0f(x)>0恒成立,确定实数a的取值范围.
(3)a=1时,是否存x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处得切线与y轴垂直?若存在求x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建福州市毕业班质量检查文科数学试卷(解析版) 题型:解答题

已知椭圆C:的离心率为

直线:y=x+2与原点为圆心,以椭圆C的短轴长为直

径的圆相切.

 (Ⅰ)求椭圆C的方程;

(Ⅱ)过点的直线与椭圆交于两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.

 

 

查看答案和解析>>

科目:高中数学 来源:2011年上海市闵行区七宝中学高考数学模拟试卷(理科)(解析版) 题型:解答题

一青蛙从点A(x,y)开始依次水平向右和竖直向上跳动,其落点坐标依次是Ai(xi,yi)(i∈N*),(如图所示,A(x,y)坐标以已知条件为准),Sn表示青蛙从点A到点An所经过的路程.
(1)若点A(x,y)为抛物线y2=2px(p>0)准线上一点,点A1,A2均在该抛物线上,并且直线A1A2经过该抛物线的焦点,证明S2=3p.
(2)若点An(xn,yn)要么落在y=x所表示的曲线上,要么落在y=x2所表示的曲线上,并且,试写出(不需证明);
(3)若点An(xn,yn)要么落在所表示的曲线上,要么落在所表示的曲线上,并且A(0,4),求Sn的表达式.

查看答案和解析>>

同步练习册答案