精英家教网 > 高中数学 > 题目详情
给出下列类比推理:
①已知a,b∈R,若a-b=0,则a=b,类比得已知z1,z2∈C,若z1-z2=0,则z1=z2
②已知a,b∈R,若a-b>0,则a>b类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
③由实数绝对值的性质|x|2=x2类比得复数z的性质|z|2=z2
④已知a,b,c,d∈R,若复数a+bi=c+di,则a=c,b=d,类比得已知a,b,c,d∈Q,若a+b
2
=c+d
2
,则a=c,b=d.
其中推理结论正确的是
①④
①④
分析:在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,要想得到本题的正确答案,可对4个结论逐一进行分析,不难解答.
解答:解:①在复数集C中,z1,z2∈C,若z1-z2=0,则它们的实部和虚部均相等,则z1和z2相等.故①正确;
②若z1,z2∈C,当z1=1+i,z2=i时,z1-z2=1>0,但z1,z2 是两个虚数,不能比较大小.故②错误;
③由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2,这两个长度的求法不是通过类比得到的,故③不正确,
④在有理数集Q中,a,b,c,d∈Q,若a+b
2
=c+d
2
,则(a-c)+(b-d)
2
=0,易得:a=c,b=d.故④正确;
故4个结论中,①④两个是正确的.
故答案为:①④.
点评:本题考查类比推理,是一个观察几个结论是不是通过类比得到,本题解题的关键在于对于所给的结论的理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列类比推理命题(其中R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”
②“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”
③“若a,b∈R,则a•b=0⇒a=0或b=0”类比推出“若a,b∈C,a•b=0⇒a=0或b=0”;
④“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈C,则复数a+bi=c+di⇒a=c,b=d”
其中类比结论正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列类比推理:
①已知a,b∈R,若a-b=0,则a=b,类比得已知z1,z2∈C,若z1-z2=0,则z1=z2
②已知a,b∈R,若a-b>0,则a>b类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
③由实数绝对值的性质|x|2=x2类比得复数z的性质|z|2=z2
④已知a,b,c,d∈R,若复数a+bi=c+di,则a=c,b=d,类比得已知a,b,c,d∈Q,若a+b
2
=c+d
2
,则a=c,b=d.
其中推理结论正确的是______.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省三明市高三(上)期末数学试卷(文科)(解析版) 题型:选择题

给出下列类比推理命题(其中R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”
②“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”
③“若a,b∈R,则a•b=0⇒a=0或b=0”类比推出“若a,b∈C,a•b=0⇒a=0或b=0”;
④“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈C,则复数a+bi=c+di⇒a=c,b=d”
其中类比结论正确的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省三门峡市卢氏一中分校高二(下)质量检测数学试卷(文科)(解析版) 题型:填空题

给出下列类比推理:
①已知a,b∈R,若a-b=0,则a=b,类比得已知z1,z2∈C,若z1-z2=0,则z1=z2
②已知a,b∈R,若a-b>0,则a>b类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
③由实数绝对值的性质|x|2=x2类比得复数z的性质|z|2=z2
④已知a,b,c,d∈R,若复数a+bi=c+di,则a=c,b=d,类比得已知a,b,c,d∈Q,若,则a=c,b=d.
其中推理结论正确的是   

查看答案和解析>>

同步练习册答案