【题目】在平面直角坐标系
中,对于点
,若函数
满足:
,都有
,就称这个函数是点A的“限定函数”.以下函数:①
,②
,③
,④
,其中是原点O的“限定函数”的序号是______.已知点
在函数
的图象上,若函数
是点A的“限定函数”,则实数a的取值范围是______.
科目:高中数学 来源: 题型:
【题目】数列
分别满足:
,其中
,其中
,设数列
前n项和分别为
.
(1)若数列
为递增数列,求数列
的通项公式;
(2)若数列
满足:存在唯一的正整数k(
),使得
,则称
为“k坠点数列”
(Ⅰ)若数列
为“6坠点数列",求
;
(Ⅱ)若数列
为“5坠点数列”,是否存在“p坠点数列”
,使得
,若存在,求正整数m的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(1)证明数列
是“平方递推数列”,且数列
为等比数列;
(2)设(1)中“平方递推数列”的前
项积为
,即
,求
;
(3)在(2)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,定义
为
的“优值”.现已知某数列的“优值”为
,记数列
的前
项和为
,若对一切的
,都有
恒成立,则实数
的取值范围为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,直线
与抛物线
交于不同两点
、
,直线
、
与抛物线的另一交点分别为两点
、
,连接
,点
关于直线
的对称点为点
,连接
、
.
![]()
(1)证明:
;
(2)若
的面积
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
在点
处的切线斜率为0.
(1)试用含有
的式子表示
,并讨论
的单调性;
(2)对于函数
图象上的不同两点
,
,如果在函数
图象上存在点
,使得在点
处的切线
,则称
存在“跟随切线”.特别地,当
时,又称
存在“中值跟随切线”.试问:函数
上是否存在两点
使得它存在“中值跟随切线”,若存在,求出
的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com