精英家教网 > 高中数学 > 题目详情
8.在等差数列{an}中,a7=9,a13=-12,则a25=(  )
A.-22B.-54C.60D.64

分析 利用等差数列的通项公式即可得出.

解答 解:设等差数列{an}的公差为d,
∵a7=9,a13=-12,
∴$\left\{\begin{array}{l}{{a}_{1}+6d=9}\\{{a}_{1}+12d=-12}\end{array}\right.$,
解得a1=30,d=-$\frac{7}{2}$.
则a25=30+24×$(-\frac{7}{2})$=-54.
故选:B.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=\left\{{\begin{array}{l}{x-5({x≥6})}\\{f({x+2})({x<6})}\end{array}}\right.$,则f(5)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式|x+1|-|x-3|≥0的解集是(  )
A.[1,+∞)B.(-∞,-1]∪[1,+∞)C.[-1,3]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$a={(0.3)^{\sqrt{3}}},b={log_{\sqrt{3}}}0.3,c={(\sqrt{3})^{0.3}}$,则a,b,c三个数用“<”连接表示为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a是实常数,函数f(x)=xlnx+ax2
(1)若曲线y=f(x)在x=1处的切线过点A(0,-2),求实数a的值;
(2)若f(x)有两个极值点x1,x2(x1<x2),
①求证:-$\frac{1}{2}$<a<0;
②求证:f(x1)<0,f(x2)>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,△ABC是边长为1正三角形,CD=DA=$\frac{{\sqrt{3}}}{3}$,AC与BD的交点为M,点N在线段PB上,且PN=$\frac{1}{2}$.若二面角A-BC-P的正切值为2$\sqrt{2}$.
(I)求证:MN∥平面PDC;
(Ⅱ)求平面DCP与平面ABP所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校1000名学生期中考试数学成绩的频率分布直方图如右图所示,其中成绩分组区间是:[50,60),[60,70),[70,
80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这1000名学生数学成绩的平均分;
(3)若数学成绩在区间[72,88]上的评为良好,在88分以上的评为优秀,试估计该校约有多少学生的数学成绩可评为良好,多少评为优秀?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x+alnx.
(1)求函数f(x)的单调递增区间;
(2)若不等式f(x)≥(a+3)x在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=xlg(x+2)-1的零点在区间(k,k+1)(k∈Z)内,则k=1.

查看答案和解析>>

同步练习册答案