精英家教网 > 高中数学 > 题目详情
19.已知集合A={0,2,4,6},B={n∈N|2n<8},则集合A∩B的子集个数为(  )
A.8B.7C.6D.4

分析 先分别求出集合A,B,从而求出集合A∩B,由此能求出集合A∩B的子集个数.

解答 解:∵集合A={0,2,4,6},
B={n∈N|2n<8}={0,1,2},
∴集合A∩B={0,2},
∴集合A∩B的子集个数为n=22=4.
故选:D.

点评 本题考查交集的子集个数求法,是基础题,解题时要认真审题,注意交集、子集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.点P到椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$上的任意一点,F1,F2是它的两个焦点,O为坐标原点,$\overrightarrow{OQ}=\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}$,则动点Q的轨迹方程是$\frac{x^2}{16}+\frac{y^2}{12}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的中心在坐标原点,右焦点F的坐标为(3,0),直线L:x+2y-2=0交椭圆于A.B两点,线段AB的中点为$M(1,\frac{1}{2})$;
(1)求椭圆的方程;
(2)动点N满足NA⊥NB,求动点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABC-A1B1C1是底面边长为2,高为$\frac{\sqrt{3}}{2}$的正三棱柱,经过AB的截面与上
底面相交于PQ,设C1P=λC1A1(0<λ<1).
(1)证明:PQ∥A1B1
(2)当CF⊥平面ABQP时,在图中作出点C在平面ABQP内的正投影F(说明作法及理由),并求四棱锥CABPQ表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合M={x|4≤x≤7},N={3,5,8},则M∩N={5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an},{bn}前n项和分别为Sn,Tn,an+1-an=2(bn+1-bn),b1=3,Sn=n2+2n+3,则Tn=$\frac{1}{2}$(n2+2n+3).(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四个不同的小球,全部放入编号为1,2,3,4,5的五个盒子中.(结果写成数字)
(1)1号盒子中有球的放法有多少种?
(2)恰有两个空盒的放法有多少种?
(3)恰有三个空盒的放法有多少种?
(4)甲球所放盒的编号不小于乙球所放盒的编号的放法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某大学的男生的体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立回归方程$\stackrel{∧}{y}$=0.85x-85.71,则下列结论中不正确的是(  )
A.y与x具有正的线性相关关系
B.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
C.过该大学某女生身高增加1cm,则其体重约增加0.85kg
D.回归直线过样本的中心$(\overline x,\overline y)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1+x-30x2)(2x-1)5的展开式中,含x3项的系数为-260(用数字填写答案)

查看答案和解析>>

同步练习册答案