精英家教网 > 高中数学 > 题目详情
已知f1(x)=exsinx,fn(x)=f'n-1(x),n≥2,则
2009i=1
fi(0)
=
 
分析:利用乘积的导数的运算法则求出前几个fn(0)值,观察归纳得到一个等比数列,利用等比数列的前n项和公式求出值.
解答:解:∵f1(x)=exsinx
∴f2(x)=exsinx+excosx
f3(x)=2excosx
f4(x)=2excosx-2exsinx
f5(x)=-4exsinx=-4f1(x)
f6(x)=-4f2(x)

f1(0)=0;f2(0)=1;f3(0)=2;f4(0)=2;f5(0)=0;f6(0)=-4;f7(0)=-8;f8(0)=-8…
归纳得每四个的和构成一个5为首项,以-4为公比的等比数列
2009
i=1
fi(0)
=
5[1-(-4)502]
5
+f2009(0)=1-4502
故答案为:1-4502
点评:本题考查利用不完全归纳找规律;等比数列的前n项和公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点为F1、F2,离心率为e.直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
AM
AB

(Ⅰ)证明:λ=1-e2
(Ⅱ)若λ=
3
4
,△MF1F2的周长为6;写出椭圆C的方程;
(Ⅲ)确定λ的值,使得△PF1F2是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,离心率为e.直线l:y=ex+a与x轴、y轴分别交于A,B两点.
(1)求证:直线l与双曲线C只有一个公共点;
(2)设直线l与双曲线C的公共点为M,且
AM
AB
,证明:λ+e2=1;
(3)设P是点F1关于直线l的对称点,当△PF1F2为等腰三角形时,求e的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)已知f1(x)=x
1
2
f2(x)=x2f3(x)=exf4(x)=log
1
2
x
,四个函数中,当0<x1<x2时,满足不等式
f(x1)+f(x2)
2
<f(
x1+x2
2
)
的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+ex,令f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),则f2013(x)=(  )
A、sinx+exB、cosx+exC、-sinx+exD、-cosx+ex

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+ex+x2 011,令f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),则f2 012(x)=                                                          (  )

A.sinx+ex                         B. cosx+ex

C.-sinx+ex                       D.-cosx+ex

查看答案和解析>>

同步练习册答案