精英家教网 > 高中数学 > 题目详情
6.已知数列{an}满足下列公式,写出它们的前5项:
(1)an=(-1)n(n2+1),
(2)a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1).

分析 (1)根据数列{an}的通项公式,即可写出它们的前5项;
(2)根据数列{an}的首项与递推公式,即可写出它们的前5项.

解答 解:(1)数列{an}中,an=(-1)n(n2+1),
所以a1=-1×(12+1)=-2,
a2=(-1)2×(22+1)=5,
a3=(-1)3×(32+1)=-10,
a4=(-1)4×(42+1)=17,
a5=(-1)5×(52+1)=-26;
(2)数列{an}中,a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1);
所以a2=1+$\frac{1}{{a}_{1}}$=1+1=2,
a3=1+$\frac{1}{{a}_{2}}$=1+$\frac{1}{2}$=$\frac{3}{2}$,
a4=1+$\frac{1}{{a}_{3}}$=1+$\frac{2}{3}$=$\frac{5}{3}$,
a5=1+$\frac{1}{{a}_{4}}$=1+$\frac{3}{5}$=$\frac{8}{5}$.

点评 本题考查了根据数列的通项公式或递推公式写出对应项的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{x+2}&{({x≤-1})}&{\;}\\{2x}&{({-1<x<2})}&{\;}\\{\frac{x^2}{2}}&{({x≥2})}&{\;}\end{array}}\right.$则$f[{f({-\frac{7}{4}})}]$=(  )
A.$\frac{1}{4}$B.-7C.$\frac{1}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.4个男同学,3个女同学站成一排.
(1)3个女同学必须相邻,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=sinx+cosx,则f($\frac{π}{12}$)的值为(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}(a+1){x^2}-(a+2)x+6$的极大值是f(-3)=15,
(1)是否存在极小值?若存在求出极小值.若不存在说明理由;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数 f(x)=ln(ex+a)(a为常数,e为自然对数的底数)是实数集R上的奇函数,函数g(x)=λf(x)+sin x在区间[-1,1]上是减函数.
(1)求实数a的值;
(2)若在x∈[-1,1]上g(x)≤t2+λt+1恒成立,求实数t的取值范围;
(3)讨论关于x的方程$\frac{lnx}{f(x)}$=x2-2ex+m的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.40B.48C.56D.92

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:y=x+m,圆O:x2+y2-4=0,圆C:x2+y2+2ax-2ay+2a2-4a=0(0<a≤4).
(1)若a=3,圆O与圆C交于M,N两点,试求线段|MN|的长.
(2)直线 l与圆C相切,且直线l在圆C心的下方,当0<a≤4时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x),对任意x∈R,都有f(x+2)=f(x)+f(1)成立,若函数y=f(x-1)的图象关于直线x=1对称,则f(2015)=(  )
A.-2B.0C.2D.2015

查看答案和解析>>

同步练习册答案