分析:(1)利用等比数列的通项公式及对数的运算性质可把a
n化为
lgb1q,同理可化a
n+1为lg
b1q,根据a
n+1-a
n=d可得d与q的关系式;
(2)由a
1b
1+a
2b
2+…+a
nb
n=n2
n+3,①得a
1b
1+a
2b
2+…+a
nb
n+a
n+1b
n+1=(n+1)2
n+4,②两式相减得a
n+1b
n+1=(n+2)2
n+3,把a
n+1=8+nd代入上式可表示出b
n+1,根据
为常数可得等式,解出即可;
解答:解:(1)a
n=
=
=
=
=
lgb1q,
an+1==
=
=lg
b1q,
∴a
n+1-a
n=lg
b1q-
lgb1q=lg
=lg
q=d,
∴10
2d=q;
(2)由a
1b
1+a
2b
2+…+a
nb
n=n2
n+3,①
得a
1b
1+a
2b
2+…+a
nb
n+a
n+1b
n+1=(n+1)2
n+4,②
②-①得a
n+1b
n+1=(n+2)2
n+3,
∵a
n+1=8+nd,∴
bn+1=,
则
=| (n+3)•2n+4(8+nd) |
| (n+2)•2n+3[8+(n+1)d] |
=
| 2(n+3)(8+nd) |
| (n+2)[8+(n+1)d] |
=
| 2dn2+(6d+16)n+48 |
| dn2+(3d+8)n+2d+16 |
,
∵{b
n}为等比数列,∴上述比式为常数,
则2d:d=(6d+16):(3d+8)=48:(2d+16),
解得d=4,则q=2,
故a
n=8+(n-1)×4=4n+4,
由
a1b1=24,得b
1=2,∴
bn=2•2n-1=2n.
点评:本题考查等差数列、等比数列的定义及其通项公式,运算量较大,对能力要求较高.