精英家教网 > 高中数学 > 题目详情

【题目】大学生村官王善良落实政府“精准扶贫”精神,帮助贫困户张三用9万元购进一部节能环保汽车,用于出租.假设第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该车每年的运营收入均为11万元.若该车使用了n(n∈N*)年后,年平均盈利额达到最大值,则n等于(注:年平盈利额=(总收入﹣总成本)× )(
A.3
B.4
C.5
D.6

【答案】A
【解析】解:设该汽车第n年的营运费为an , 万元,则数列{an}是以2为首项,2为公差的等差数列,则an=2n,
则该汽车使用了n年的营运费用总和为Tn=n2+n,
设第n年的盈利总额为Sn , 则Sn=11n﹣(n2+n)﹣9=﹣n2+10n﹣9,
∴年平均盈利额P=10﹣(n+
当n=3时,年平均盈利额取得最大值4,
故选:A
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx﹣ )( <ω<2),在区间(0, )上(
A.既有最大值又有最小值
B.有最大值没有最小值
C.有最小值没有最大值
D.既没有最大值也没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,x∈[2,6].
(1)证明f(x)是减函数;
(2)若函数g(x)=f(x)+sinα的最大值为0,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为椭圆 + =1上一点,F1 , F2为左右焦点,若∠F1PF2=60°.
(1)求△F1PF2的面积;
(2)求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,a2=6,且数列{an1﹣an}{n∈N*}是公差为2的等差数列.
(1)求{an}的通项公式;
(2)记数列{ }的前n项和为Sn , 求满足不等式Sn 的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、
(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,AB=2,点E是BC的中点.

(1)求线段DE的长;
(2)求直线A1E与平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体ABCD﹣A1B1C1D1 , 下列向量的数量积一定不为0的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:θ为第一象限角, =(sin(θ﹣π),1), =(sin( ﹣θ),﹣ ),
(1)若 ,求 的值;
(2)若| + |=1,求sinθ+cosθ的值.

查看答案和解析>>

同步练习册答案