| A. | -1 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
分析 可求出f(x)的周期为2,从而得出$|\overrightarrow{BC}|=1$,根据正弦函数的对称性可知,点C为DE的中点,从而$\overrightarrow{BD}+\overrightarrow{BE}=2\overrightarrow{BC}$,并且$\overrightarrow{BE}-\overrightarrow{CE}=\overrightarrow{BC}$,代入$(\overrightarrow{BD}+\overrightarrow{BE})•(\overrightarrow{BE}-\overrightarrow{CE})$进行数量积的运算即可.
解答 解:f(x)=sin(πx+φ)的周期为2;
∴$|\overrightarrow{BC}|=1$;
D,E关于点C对称;
∴C是线段DE的中点;
∴$(\overrightarrow{BD}+\overrightarrow{BE})•(\overrightarrow{BE}-\overrightarrow{CE})$
=$2\overrightarrow{BC}•(\overrightarrow{BE}+\overrightarrow{EC})$
=$2{\overrightarrow{BC}}^{2}$
=2.
故选D.
点评 考查三角函数周期的计算公式,正弦函数的对称中心,以及向量加法的平行四边形法则,向量加法的几何意义.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x=rcosθ-a}\\{y=rsinθ-b}\end{array}\right.$(θ∈[0,2π)) | B. | $\left\{\begin{array}{l}{x=rcosθ+a}\\{y=rsinθ+b}\end{array}\right.$(θ∈[0,2π)) | ||
| C. | $\left\{\begin{array}{l}{x=-rcosθ-a}\\{y=-rsinθ-b}\end{array}\right.$(θ∈[0,2π)) | D. | $\left\{\begin{array}{l}{x=rsinθ-a}\\{y=rcosθ-b}\end{array}\right.$(θ∈[0,2π)) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | [$\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,1) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.2 | B. | 0.3 | C. | 0.7 | D. | 与σ的值有关 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com