精英家教网 > 高中数学 > 题目详情
8.设直线l1:kx-y+1=0,l2:x-ky+1=0,若l1∥l2,则k=(  )
A.-1B.1C.±1D.0

分析 对k分类讨论,利用平行线的充要条件即可得出.

解答 解:k=0时,两条直线不平行.
k≠0时,由l1∥l2,则$\frac{k}{1}=\frac{-1}{-k}≠\frac{1}{1}$,解得k=-1.
综上可得:k=-1.
故选:A.

点评 本题考查了平行线的充要条件、分类讨论方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.不等式(x-1)(2-x)>0的解集是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+2x-3,x≤0\\ lnx-a,x>0\end{array}\right.({a∈R})$,若关于x的方程f(x)=k有三个不相等的实数根,则实数k的取值范围是(  )
A.(-∞,-4)B.[-4,-3]C.(-4,-3]D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙、丙三人投篮的水平都比较稳定,若三人各自独立地进行一次投篮测试,则甲投中而乙不投中的概率为$\frac{1}{4}$,乙投中而丙不投中的概率为$\frac{1}{12}$,甲、丙两人都投中的概率为$\frac{2}{9}$.
(1)分别求甲、乙、丙三人各自投篮一次投中的概率;
(2)若丙连续投篮5次,求恰有2次投中的概率;
(3)若丙连续投篮3次,每次投篮,投中得2分,未投中得0分,在3次投篮中,若有2次连续投中,而另外1次未投中,则额外加1分;若3次全投中,则额外加3分,记ξ为丙连续投篮3次后的总得分,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.若直线ax+y-1=0与直线x+ay+2=0平行,则a=1
C.若命题“?x∈R,x2+(a-1)x+1<0”是真命题,则实数a的取值范围是a<-1或a>3
D.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{k{x}^{2}}{{e}^{x}}$(k>0).
(1)求函数f(x)的单调区间;
(2)当k=1时,若存在x>0,使lnf(x)>ax成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中,错误的一个是(  )
A.将23(10)化成二进位制数是10111(2)
B.在空间坐标系点M(1,2,3)关于x轴的对称点为(1,-2,-3)
C.数据:2,4,6,8的方差是数据:1,2,3,4的方差的2倍
D.若点A(-1,0)在圆x2+y2-mx+1=0的外部,则m>-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设m,n是不同的直线,α,β是不同的平面,下列命题中正确的是(  )
A.若m∥α,n⊥β,m⊥n,则α⊥βB.若m∥α,n⊥β,m∥n,则α⊥β
C.若m∥n,m∥α,n∥β,则α∥βD.若m?α,n?α,m∥β,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={-1,2,3},则集合A的非空真子集个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案