精英家教网 > 高中数学 > 题目详情
四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF:FC=2:3.DH:HA=2:3.
(1)证明:点G、E、F、H四点共面;
(2)证明:EF、GH、BD交于一点.

精英家教网
证明:(1)∵E、G分别为BC、AB的中点,∴EGAC
又∵DF:FC=2:3.DH:HA=2:3,∴FHAC.
∴EGFH
所以,E、F、G、H四点共面.
(2)由(1)可知,EGFH,且EG≠FH,即EF,GH是梯形的两腰,
所以它们的延长线必相交于一点P
∵BD是EF和GH分别所在平面BCD和平面ABD的交线,而点P是上述两平面的公共点,
∴由公理3知P∈BD.
所以,三条直线EF、GH、BD交于一点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、如图所示,在四面体ABCD中,E,F,G分别是棱AB,AC,CD的中点,则过E,F,G的截面把四面体分成两部分的体积之比VADEFGH:VBCEFGH=
1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体ABCD中,E,F,G分别为AB,CD,BC的中点,则直线EF与直线AG所成角的余弦值为(  )
A、
6
6
B、
3
3
C、
30
6
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)如图,菱形ABCD中,AB=AC=1,其对角线的交点为O,现将△ADC沿对角线AC向上翻折,使得OD⊥OB.在四面体ABCD中,E在AB上移动,点F在DC上移动,且AE=CF=a(0≤a≤1).
(1)求线段EF的最大值与最小值;
(2)当线段EF的长最小时,求异面直线AC与EF所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体ABCD中,E,F分别为BC,AD的中点,则异面直线AE与CF所成角的余弦值是
 

查看答案和解析>>

同步练习册答案