已知函数
的图像过原点,且在
处的切线为直线![]()
(Ⅰ)求函数
的解析式;
(Ⅱ)求函数
在区间
上的最小值和最大值.
科目:高中数学 来源:2013-2014学年江西赣州市六校高三第一学期期末联考文科数学试卷(解析版) 题型:解答题
已知函数![]()
的图像过坐标原点
,且在点
处的切线的斜率是
.
(1)求实数
的值;
(2)求
在区间
上的最大值;
(3)对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
为直角顶点的直角三角形,且此三角形斜边的中点在
轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西师大附中,临川一中高三期末联考文科数学试卷(解析版) 题型:解答题
已知函数
的图像过坐标原点
,且在点
处的切线斜率为
.
(1)求实数
的值;
(2) 求函数
在区间
上的最小值;
(Ⅲ)若函数
的图像上存在两点
,使得对于任意给定的正实数
都满足
是以
为直角顶点的直角三角形,且三角形斜边中点在
轴上,求点
的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届全国100所名校高三学期初理科数学示范卷(解析版) 题型:解答题
已知函数
的图像过坐标原点
,且在点
处的切线的斜率是
.
(1)求实数
的值;
(2)求
在区间
上的最大值;
(3)对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
为
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源:正定中学2010高三下学期第一次考试(数学理) 题型:解答题
(本小题满分12分)
已知函数
的图像过点
,且
对任意实数都成
立,函数
与
的图像关于原点对称.
.
(Ⅰ)求
与
的解析式;
(Ⅱ)若
在[-1,1]上是增函数,求实数λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com