精英家教网 > 高中数学 > 题目详情
设集合M={x|-1≤x<2},N={x|x-k≤0},若M∩N=∅,则k的取值范围是
k<-1
k<-1
分析:将集合N={x|x-k≤0}化简为(-∞,k],根据M∩N=∅,说明两个集合没有公共的元素,再结合数轴就能得到正确答案.
解答:解:化简得M={x|-1≤x<2}=[-1,2),
N={x|x-k≤0}=(-∞,k],
∵M∩N=∅

∴结合数轴得,k<-1
故答案为k<-1
点评:本题考查了集合关系中的参数取值问题,属于基础题.数形结合是解决此类问题的常用方法,本题利用了数轴,使问题变得一目了然.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设集合M={x|-1≤x<2},N={x|x-k≤0},若M∩N≠∅,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

21、设集合M={x|-1≤x<2},N={x|x≤a},若M∩N≠∅,则a的取值范围是
{a|a≥-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|1≤x≤5,x∈Z},非空集合A满足以下条件:①A⊆M;②若x∈A,则5-x∈A.试写出满足条件的一个集合A=
{1,4},{2,3},{1,2,3,4}(以上集合写出一个即可)
{1,4},{2,3},{1,2,3,4}(以上集合写出一个即可)
(写出一个即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

1、设集合M={x|-1≤x≤1},N={y|y=2x,-1≤x≤1},则集合M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|-1<x<4,且x∈N},P={x|log2x<1},则M∩P=(  )

查看答案和解析>>

同步练习册答案