精英家教网 > 高中数学 > 题目详情
3.等差数列{an}中,若公差d=2,a4+a17=6,则a2+a4+…+a20的值是(  )
A.35B.30C.40D.45

分析 根据公差d=2,a4+a17=6,求得a1=-16,再利用等差数列的前n项和公式求得a2+a4+a6+…+a20的值

解答 解:∵公差d=2,a4+a17=6,
∴a1+3d+a1+16d=6,
∴a1=-16,
∴a2+a4+a6+…+a20=10(a1+d)+$\frac{10×9}{2}$×2d=10×(-14)+180=40
故选:C

点评 本题主要考查等差数列的性质,等差数列的通项公式,等差数列的前n项和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=log2x.若a=4b,则f(a)-f(b)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{2}{{{3^x}+1}}$+m,m是实常数,
(1)当m=1时,写出函数f(x)的值域;
(2)当m=0时,判断函数f(x)的奇偶性,并给出证明;
(3)若f(x)是奇函数,不等式f(f(x))+f(a)<0对x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC是锐角三角形,它的三个内角∠A、∠B、∠C的对边分别为a、b、c,满足b2=a2+c2-4bccos2B,且b≠c.
(1)求证:A=2B;
(2)若b=1,试求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求值:
(1)($\frac{3}{5}$)0+2-2•|-0.064|${\;}^{\frac{1}{3}}$-($\frac{9}{4}$)${\;}^{\frac{1}{2}}$;
(2)log2(47×25)+log26-log23.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=4m(cos2(x+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$sin2x)+n-2m(m≠0).
(1)求函数f(x)的最小正周期T;
(2)若m=1,函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求n;
(3)若n=1,函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),求:
(1)当k为何值时,A,B,C三点共线?
(2)当k为何值时,∠ABC为直角?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2cos2$\frac{x}{2}$+sinx+sin2x(x∈R).
(1)求函数f(x)的最大值,并求此时x的值;
(2)已知△ABC中,内角A,B,C的对边分别为a,b,c,若f(A+$\frac{π}{4}$)=2且a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,A(2,1),B(3,-2),C(-3,1),边BC上的高为AD,求点D的坐标及|$\overrightarrow{AD}$|的值.

查看答案和解析>>

同步练习册答案