精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R.
(Ⅰ)求函数y=f(-3x)+1的最小正周期和单调递减区间;
(Ⅱ)已知△ABC中的三个内角A,B,C所对的边分别为a,b,c,若锐角A满足f(
A
2
-
π
6
)=
3
,且a=7,sinB+sinC=
13
3
14
,求△ABC的面积.
考点:正弦定理,余弦定理
专题:三角函数的图像与性质,解三角形
分析:(Ⅰ)利用三角恒等变换可求得f(x)=2sin(2x+
π
3
),于是可得函数y=f(-3x)+1的解析式,利用正弦函数的周期性与单调性即可求得其最小正周期和单调递减区间;
(Ⅱ)依题意,可求得A=
π
3
,利用正弦定理可求得b+c=13,再用余弦定理可求得bc=40,从而可得△ABC的面积.
解答: (本小题满分12分)
解:(Ⅰ)∵f(x)=2sinxcosx+
3
(2cos2x-1)
=sin2x+
3
cos2x=2sin(2x+
π
3
)
…(2分)
y=f(-3x)+1=2sin(-6x+
π
3
)+1=-2sin(6x-
π
3
)+1

∴y=f(-3x)+1的最小正周期为T=
6
=
π
3
…(3分)
2kπ-
π
2
≤6x-
π
3
≤2kπ+
π
2
得:
1
3
kπ-
π
36
≤x≤
1
3
kπ+
36
,k∈Z,
∴y=f(-3x)+1的单调递减区间是[
1
3
kπ-
π
36
1
3
kπ+
36
]
,k∈Z…(6分)
(Ⅱ)∵f(
A
2
-
π
6
)=
3
,∴2sin(A-
π
3
+
π
3
)=
3
,∴sinA=
3
2
…(7分)
0<A<
π
2
,∴A=
π
3

由正弦定理得:sinB+sinC=
b+c
a
sinA

13
3
14
=
b+c
7
×
3
2
,∴b+c=13…(9分)
由余弦定理a2=b2+c2-2bccosA得:a2=(b+c)2-2bc-2bccosA,
即49=169-3bc,∴bc=40…1(1分)
S△ABC=
1
2
bcsinA=
1
2
×40×
3
2
=10
3
…(12分)
点评:本题考查三角恒等变换的应用,着重考查正弦函数的周期性与单调性,突出考查正弦定理与余弦定理的综合运用,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2014年春节联欢晚会结束后,某网站就观众最喜欢的节目类型进行调查.
(Ⅰ)网站记者从现场观看晚会的5名观众A,B,C,D,E中随机抽取2人进行访谈,求观众A恰好被抽中的概率;
(Ⅱ)该网站又通过网络从观看电视直播的观众中选取1000名进行调查,经数据处理后得下列图表:

请你根据上述图表的数据信息,完成下列2×2列表的填写,并说明有多大的把握认为“是否最喜欢歌舞类节目和性别有关”
最喜欢歌舞类节目 不是最喜欢歌舞类节目 合计
合计 1000
下面的临界值表及公式可供参考:
P(K2≥k) 0.150 0.100 0.050 0.010 0.005 0.001
k 2.072 2.706 3.841 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
a•2x-a-1
2x-1
为奇函数.
(1)确定实数a的值;
(2)求函数的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<0)的最小正周期为π,且其图象经过点(
3
,0).
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(
x
2
+
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
3(t+1)
2
x2+3tx+1(t∈R).
(Ⅰ)若函数f(x)在点(2,f(2))处的切线与直线y=9x-2平行,求t的值;
(Ⅱ)设函数g(x)=f′(x)+3lnx-3x2,求函数g(x)的单调区间;
(Ⅲ)若存在x0∈(0,2),使得f(x0)是f(x)在x∈[0,2]上的最小值,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-3<0},B={x|m-8≤x≤m+1}(m∈R)
(1)当m=0时,求A∩B;
(2)p:x∈A,q:x∈B,若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,Sn为其前n项和,且a3=9,S6=60.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1=abn,求数列{bn}的前n项和Tn
(Ⅲ)若
7
m
35
1
2n+3
(1+
1
a1
)(1+
1
a2
)…(1+
1
an-1
)对n≥2且n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=1,则a+2b+3c的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①线性相关系数r越大,两个变量的线生相关性越强;反之,线性相关性越弱;
②由变量x和y的数据得到其回归直线方程l:
y
=bx+a,则l一定经过点P(
.
x
.
y
);
③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;
⑤在回归直线方程
y
=0.1x+10中,当解释变量x每增加一个单位时,预报变量
y
增加0.1个单位;
其中真命题的序号是
 

查看答案和解析>>

同步练习册答案