精英家教网 > 高中数学 > 题目详情
已知定义的R上的函数f(x)满足f(x)=f(4-x),又函数f(x+2)在[0,+∞)单调递减.
(1)求不等式f(3x)>f(2x-1)的解集;
(2)设(1)中的解集为A,对于任意t∈A时,不等式x2+(t-2)x+1-t>0恒成立,求实数x的取值范围.
分析:(1)由已知中定义的R上的函数f(x)满足f(x)=f(4-x),可得直线x=2是函数图象的对称轴,又函数f(x+2)在[0,+∞)单调递减我们易判断出函数的单调性,进而根据函数的单调性可将不等式f(3x)>f(2x-1)转化为一个绝对值不等式,进而得到答案.
(2)由(1)易得参数t的取值范围,根据二次函数的图象和性质,我们可以构造出关于x的不等式组,解不等式组即可求出实数x的取值范围.
解答:解:(1)∵f(x)=f(4-x)∴f(x)图象关于直线x=2对称
又∵f(x+2)在[0,+∞)上单调递减
∴f(x)在[2,+∞)上单调递减
∴不等式f(3x)>f(2x-1)等价于:|3x-2|<|2x-1-2|?(3x-2)2<(2x-3)2?(5x-5)(x+1)<0?-1<x<1
∴原不等式的解集为(-1,1)
(2)令g(t)=(x-1)t+(x2-2x+1)是关于t的函数.
∵t∈(-1,1)时,不等式x2+(t-2)x+(1-t)>0恒成立
即使g(t)>0在t∈(-1,1)上恒成立
当x≠1时,
g(-1)≥0
g(1)≥0
?
x2-3x+2≥0
x2-x≥0
?
x≤1或x≥2
x≤0或x≥1
?x≤0或x=1或x≥2
∴x≤0或x≥2
当x=1时,0>0恒不成立,∴x≠1
综上,x∈(-∞,0]∪[2,+∞]
点评:本题考查的知识点是函数单调性的性质,二次函数的性质,其中(1)的关键是判断出函数图象的对称轴,进而判断出函数的单调性,(2)的关键是将不等式恒成立问题转化为解不等式组问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=2x+
a2x
,a为常数,若f(x)为偶函数.
(1)求a的值;
(2)判断函数f(x)在(0,+∞)内的单调性,并用单调性定义给予证明;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的单调函数y=f(x),当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并写出适合条件的函数f(x)的一个解析式;
(2)数列{an}满足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通项公式an的表达式;
②令bn=(
1
2
)anSn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,试比较Sn
4
3
Tn
的大小,并加以证明;
③当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
对于不小于2的正整数n恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•崇文区一模)已知定义在R上的函数f(x)不恒为零,且满足f(x-2)=f(x+2),f(2-x)=f(2+x),则f(x)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州一模)已知定义在R上的函数f(x)=ax3+bx+c(a,b,c∈R),当x=-1时,f(x)取得极大值3,f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知实数t能使函数f(x)在区间(t,t+3)上既能取到极大值,又能取到极小值,记所有的实数t组成的集合为M.请判断函数g(x)=
f(x)x
(x∈M)
的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+2)=f(x),且当0≤x<2时,f(x)=x3-x,则函数y=f(x)在区间[0,6]上零点个数为(  )
A、6B、9C、8D、7

查看答案和解析>>

同步练习册答案