精英家教网 > 高中数学 > 题目详情

已知函数的所有正数从小到大排成数列

(Ⅰ)证明数列{}为等比数列;

(Ⅱ)记是数列{}的前n项和,求

解(Ⅰ)证明:

解出为整数,从而        

    

所以数列是公比的等比数列,且首项

(Ⅱ)解:

 

从而

    

因为,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式的图象经过点(4,8).
(1)求该函数的解析式;
(2)数列{an}中,若a1=1,Sn为数列{an}的前n项和,且满足an=f(Sn)(n≥2),
证明数列数学公式成等差数列,并求数列{an}的通项公式;
(3)另有一新数列{bn},若将数列{bn}中的所有项按每一行比上一行多一项的规则排成如下数表:
记表中的第一列数b1,b2,b4,b7,…,构成的数列即为数列{an},上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当数学公式时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州市江都市丁沟中学高三(上)自主学习诊断数学试卷(解析版) 题型:解答题

已知函数的图象经过点(4,8).
(1)求该函数的解析式;
(2)数列{an}中,若a1=1,Sn为数列{an}的前n项和,且满足an=f(Sn)(n≥2),
证明数列成等差数列,并求数列{an}的通项公式;
(3)另有一新数列{bn},若将数列{bn}中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数b1,b2,b4,b7,…,构成的数列即为数列{an},上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省镇江市高考数学一模试卷(解析版) 题型:解答题

已知函数的图象经过点(4,8).
(1)求该函数的解析式;
(2)数列{an}中,若a1=1,Sn为数列{an}的前n项和,且满足an=f(Sn)(n≥2),
证明数列成等差数列,并求数列{an}的通项公式;
(3)另有一新数列{bn},若将数列{bn}中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数b1,b2,b4,b7,…,构成的数列即为数列{an},上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省镇江市高三第一次调研数学试卷(解析版) 题型:解答题

已知函数的图象经过点(4,8).
(1)求该函数的解析式;
(2)数列{an}中,若a1=1,Sn为数列{an}的前n项和,且满足an=f(Sn)(n≥2),
证明数列成等差数列,并求数列{an}的通项公式;
(3)另有一新数列{bn},若将数列{bn}中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数b1,b2,b4,b7,…,构成的数列即为数列{an},上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

科目:高中数学 来源:2014届广东省陆丰市高二第二次月考理科数学试卷(解析版) 题型:解答题

(本小题满分14分)               

已知函数的图像经过点.

(1)求该函数的解析式;

(2)数列中,若为数列的前项和,且满足

证明数列成等差数列,并求数列的通项公式;

(3)另有一新数列,若将数列中的所有项按每一行比上一行多一项的规则排成

如下数表:

 

    

      

记表中的第一列数构成的数列即为数列,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当

时,求上表中第行所有项的和.

 

查看答案和解析>>

同步练习册答案