精英家教网 > 高中数学 > 题目详情

如图,M、N、P分别是正方体ABCD-中的棱BC、、CD的中点,求证:平面⊥平面MND.

答案:
解析:

在平面ABCD内,由平面几何知识可证明DM⊥AP,又⊥DM,∴DM⊥面,∴平面⊥平面MND.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网现有一块棱长为a的正方体形的木料,如图,M、N、P分别为AD、CD、BB1的中点.现要沿过M、N、P三点的平面将木料锯开.
(1)求作锯面与平面AA1C1C的交线GH,其中G、H分别在C1C、AA1上(写出作图过程即可,不必证明),并说明GH与平面ABCD的关系,然后给出证明.
(2)若Q为C1D1的中点.求点P到平面MNQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且AM:MB=CN:NB=CP:PD.
求证:(1)AC∥平面MNP,BD∥平面MNP;
(2)平面MNP与平面ACD的交线∥AC.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省唐山一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且AM:MB=CN:NB=CP:PD.
求证:(1)AC∥平面MNP,BD∥平面MNP;
(2)平面MNP与平面ACD的交线∥AC.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省唐山一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且AM:MB=CN:NB=CP:PD.
求证:(1)AC∥平面MNP,BD∥平面MNP;
(2)平面MNP与平面ACD的交线∥AC.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省上饶市重点中学高三第二次联考数学试卷(文科)(解析版) 题型:解答题

现有一块棱长为a的正方体形的木料,如图,M、N、P分别为AD、CD、BB1的中点.现要沿过M、N、P三点的平面将木料锯开.
(1)求作锯面与平面AA1C1C的交线GH,其中G、H分别在C1C、AA1上(写出作图过程即可,不必证明),并说明GH与平面ABCD的关系,然后给出证明.
(2)若Q为C1D1的中点.求点P到平面MNQ的距离.

查看答案和解析>>

同步练习册答案