精英家教网 > 高中数学 > 题目详情
点P(a,b)是双曲线x2-y2=1右支上一点,且P到渐近线距离为
2
,则a+b=______.
∵点P(a,b)是双曲线x2-y2=1右支上一点,
∴a2-b2=1且a>0,①
又P到渐近线y=±x距离为
2

|a-b|
2
=
2
②或
|a+b|
2
=
2
③,
|a-b|
2
=
2

∴a-b=±2;
当a-b=2时,代入①得:a+b=
1
2

当a-b=-2时,代入①得:a+b=-
1
2
,此时a=-
5
4
,与a>0矛盾,故舍去;
|a+b|
2
=
2
③,
∴a+b=±2.
当a+b=2时,a-b=
1
2
可解得a=
5
4
,符合题意;
同理可得,当a+b=-2时,a-b=-
1
2
,解得a=-
5
4
(舍去);
综上所述,a+b=2或a+b=
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的虚轴长为2
3
,渐近线方程是y=±
3
x
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(分)已知双曲线C的中心在原点,焦点在x轴上,右准线为一条渐近线的方程是过双曲线C的右焦点F2的一条弦交双曲线右支于P、Q两点,R是弦PQ的中点.

   (1)求双曲线C的方程;

   (2)若A、B分别是双曲C上两条渐近线上的动点,且2|AB|=|F1F2|,求线段AB的中点M的迹方程,并说明该轨迹是什么曲线。

   (3)若在双曲线右准线L的左侧能作出直线m:x=a,使点R在直线m上的射影S满足,当点P在曲线C上运动时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013届陕西省高二下学期期中考试理科数学试卷(解析版) 题型:选择题

为坐标原点,,是双曲线(a>0,b>0)的焦点,若在双曲

线上存在点P,满足∠P=60°,∣OP∣=,则该双曲线的渐近线方程为(    )

A.x±y=0            B.x±y=0

C. x±=0           D.±y=0

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:数学公式的虚轴长为2数学公式,渐近线方程是y=数学公式,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且数学公式
(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年上海市闵行区高考数学一模试卷(文科)(解析版) 题型:解答题

设双曲线C:的虚轴长为2,渐近线方程是y=,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

同步练习册答案