精英家教网 > 高中数学 > 题目详情

【题目】已知直线y=x+b与椭圆 +y2=1相交于A,B两个不同的点.
(1)求实数b的取值范围;
(2)已知弦AB的中点P的横坐标是- ,求b的值.

【答案】
(1)解:将y=x+b 代入 +y2=1,消去y,整理得3x2+4bx+2b2﹣2=0

∵直线y=x+b与椭圆 +y2=1相交于A,B两个不同的点

∴△=16b2﹣12(2b2﹣2)=24﹣8b2>0,∴﹣


(2)解:设A(x1,y1),B(x2,y2

由(1)得x1+x2=﹣ =﹣ ×2,得到b=1,满足﹣ .故b=1


【解析】(1)将y=x+b 代入 +y2=1,消去y,整理得3x2+4bx+2b2﹣2=0,由△=16b2﹣12(2b2﹣2)=24﹣8b2>0 即可(2)设A(x1 , y1),B(x2 , y2),由(1)得x1+x2=﹣ =﹣ ×2,可得b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[﹣1,2],则函数g(x)=f(2x﹣ )的定义域为(
A.[ ]
B.[1, ]
C.[﹣1, ]
D.[﹣1, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+3.
(1)若f(x)在(﹣∞, ]是减函数,在[ ,+∞)是增函数,求函数f(x)在区间[﹣1,5]的最大值和最小值.
(2)求实数a的取值范围,使f(x)在区间[﹣5,5]上是单调函数,并指出相应的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E,F,G分别为A1B1 , BB1 , B1C1的中点,则AC1与D1E所成角的余弦值为 , AC1与平面EFG所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)
(1)求证:对任意m∈R,直线l与⊙C恒有两个交点;
(2)求直线l被⊙C截得的线段的最短长度,及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,当点M(x,y)在y=f(x)的图象上运动时,点N(x﹣2,ny)在函数y=gn(x)的图象上运动(n∈N*).
(1)求y=gn(x)的表达式;
(2)若方程g1(x)=g2(x﹣2+a)有实根,求实数a的取值范围;
(3)设 ,函数F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域为 ,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别为双曲线C: =1的左、右焦点,若存在过F1的直线分别交双曲线C的左、右支于A,B两点,使得∠BAF2=∠BF2F1 , 则双曲线C的离心率e的取值范围是(
A.(3,+∞)
B.(1,2+
C.(3,2+
D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中, 平面 ,点在棱上,且.建立如图所示的空间直角坐标系.

(1)当时,求异面直线的夹角的余弦值;

(2)若二面角的平面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:x2+y2﹣3x﹣3y+3=0,圆C2:x2+y2﹣2x﹣2y=0.
(1)求两圆的公共弦所在的直线方程及公共弦长.
(2)求过两圆交点且面积最小的圆的方程.

查看答案和解析>>

同步练习册答案