精英家教网 > 高中数学 > 题目详情
已知椭圆=1的焦点在y轴上,若a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},则这样的椭圆共有多少个?

解析:依题意知b>a,当b=6或7时,a各有5个可能取值;

当b=5时,a只有4个可能取值;

当b=4时,a只有3个可能取值;

当b=3时,a只有2个可能取值;

当b=2时,a只有1个可能取值.

由分类加法计数原理知:共有5+5+4+3+2+1=20个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,一个顶点的坐标是(0,1),离心率等于
2
5
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若
MA
=λ1
AF
MB
=λ2
BF
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的焦点在x轴上,离心率为
1
2
,对称轴为坐标轴,且经过点(1,
3
2
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线y=kx-2与椭圆E相交于A,B两点,在OA上存在一点M,OB上存在一点N,使得
MA
=
1
2
AB
,若原点O在以MN为直径的圆上,求直线斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)已知椭圆E的焦点在x轴上,离心率为
1
2
,对称轴为坐标轴,且经过点(1,
3
2
)

(I)求椭圆E的方程;
(II)直线y=kx-2与椭圆E相交于A、B两点,O为原点,在OA、OB上分别存在异于O点的点M、N,使得O在以MN为直径的圆外,求直线斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,点M是椭圆上异于A1、A2的任意一点,设直线MA1、MA2的斜率分别为KMA1、KMA2,证明KMA1•KMA2为定值;
(Ⅲ)设椭圆方程
x2
a2
+
y2
b2
=1
,A1、A2为长轴两个端点,M为椭圆上异于A1、A2的点,KMA1、KMA2分别为直线MA1、MA2的斜率,利用上面(Ⅱ)的结论得KMA1•KMA2=
-
b
a
-
b
a
(只需直接填入结果即可,不必写出推理过程).

查看答案和解析>>

同步练习册答案