精英家教网 > 高中数学 > 题目详情

定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)单调递减,若g(1-m)-g(m)<0,则实数m的取值范围是________.


分析:由题条件知函数在[0,2]上是减函数,在[-2,0]上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将f(1-m)<f(m)转化成一般不等式,再结合其定义域可以解出m的取值范围.
解答:因为函数是偶函数,∴g(1-m)=g(|1-m|),g(m)=g(|m|),
又g(x)在x≥0上单调递减,故函数在x≤0上是增函数,
∵f(1-m)<f(m),
,得
实数m的取值范围是
故答案为:-1≤m<
点评:本题考点是抽象函数及其应用,考查利用抽象函数的单调性解抽象不等式,解决此类题的关键是将函数的性质进行正确的转化,将抽象不等式转化为一般不等式求解.本题在求解中有一点易疏漏,即忘记根据定义域为[-2,2]来限制参数的范围.做题一定要严谨,转化要注意验证是否等价.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在[-2,2]上的偶函数f (x)在区间[一2,0]上单调递增.若f(2一m)<f(m),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-2,2]上的奇函数f(x),当x≥0时,f(x)单调递减,若f(1-m)+f(m)<0成立,求m的取值范为
[-1,2]
[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=
3x9x+1

(1)判断f(x)在(0,2)上的单调性,并给予证明;
(2)求f(x)在[-2,2]上的解析式;
(3)当λ为何值时,关于方程f(x)=λ在[-2,2]上有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,若f(a)+f(a-1)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数y=f(x)在(0,2]上的图象如图所示,则不等式f(x)≥0的解集是
[-2,-1]∪[0,1]
[-2,-1]∪[0,1]

查看答案和解析>>

同步练习册答案