精英家教网 > 高中数学 > 题目详情
已知向量,其中x∈{1,2,4,5},y∈{2,4,6,8},则满足条件的不共线的向量共有    个.
【答案】分析:先根据⇒x1y2-x2y1=0,知道不共线向量,只需要x1y2-x2y1≠0;再对x的取值分四种情况讨论即可得出结论.
解答:解:因为⇒x1y2-x2y1=0.
所以要找不共线向量,只需要x1y2-x2y1≠0即可.
当x=1时,y=2,4,6,8符合要求
当x=2时,y=2,6符合要求
当x=5 时,y=2,4,6,8符合要求
当x=4时,y=2,6符合要求;
 故满足要求的不共线向量共有4+2+4+2=12个.
故答案为:12.
点评:本题主要考查向量共线定理的应用.如果则,⇒x1x2+y1y2=0;⇒x1y2-x2y1=0.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年河南省周口市项城二中高三(上)第三次月考数学试卷(文科)(解析版) 题型:解答题

已知向量,其中x∈R,
(1)当时,求x值的集合;
(2)设函数,求f(x)的最小正周期及其单调增区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省衡阳八中高三(上)第二次月考试卷试卷(理科)(解析版) 题型:解答题

已知向量,其中x∈R,
(1)当时,求x值的集合;
(2)设函数,求f(x)的最小正周期及其单调增区间.

查看答案和解析>>

科目:高中数学 来源:2012年山东省实验中学高考数学三模试卷(文科)(解析版) 题型:解答题

已知向量,其中x∈R,
(1)当时,求x值的集合;
(2)设函数,求f(x)的最小正周期及其单调增区间.

查看答案和解析>>

科目:高中数学 来源:2012年山东省实验中学高考数学三模试卷(理科)(解析版) 题型:解答题

已知向量,其中x∈R,
(1)当时,求x值的集合;
(2)设函数,求f(x)的最小正周期及其单调增区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012年黑龙江省高二上学期期中考试理科数学 题型:选择题

已知向量,其中x>0.若,则x的值为(  )

A.8           B.4           C.2               D.0

 

查看答案和解析>>

同步练习册答案