精英家教网 > 高中数学 > 题目详情

设f(x)=数学公式,x∈R,那么f(x)是


  1. A.
    奇函数且在(0,+∞)上是增函数
  2. B.
    偶函数且在(0,+∞)上是增函数
  3. C.
    函数且在(0,+∞)上是减函数
  4. D.
    偶函数且在(0,+∞)上是减函数
D
分析:先利用函数奇偶性的定义判断函数的奇偶性,然后通过讨论去绝对值号,即可探讨函数的单调性.
解答:∵f(x)=,x∈R,∴f(-x)===f(x),故f(x)为偶函数
当x>0时,f(x)=,是减函数,
故选D.
点评:本题考查了函数奇偶性的判断和函数单调性的判断与证明,是个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是(  )
A、{S}=1且{T}=0B、{S}=1且{T}=1C、{S}=2且{T}=2D、{S}=2且{T}=3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)设f(x)=ln(x+1)+
x+1
+ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=
3
2
x在(0,0)点相切.
(I)求a,b的值;
(II)证明:当0<x<2时,f(x)<
9x
x+6

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市临海市杜桥中学高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省重点中学协作体高三第一次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步练习册答案