精英家教网 > 高中数学 > 题目详情
(2008•如东县三模)设函数f(x)=lnx.
(Ⅰ)证明函数g(x)=f(x)-
2(x-1)x+1
在x∈(1,+∞)上是单调增函数;
(Ⅱ)若不等式1-x2≤f(e1-2x)+m2-2bm-2,当b∈[-1,1]时恒成立,求实数m的取值范围.
分析:(I)只需求出g′(x),证明g′(x)≥0;
(Ⅱ)原不等式即为m2-2bm-2≥1-(x-1)2在b∈[-1,1]时恒成立.由1-(x-1)2的最大值为1知,只需m2-2bm-3≥0在b∈[-1,1]时恒成立.令Q(b)=m2-2bm-3,则Q(-1)≥0,且Q(1)≥0.解出即可;
解答:(I)证明:∵g′(x)=
1
x
-
2(x+1)-2(x-1)
(x+1)2
=
(x-1)2
x(x+1)2

当x>1时,g'(x)>0,
∴g(x)在x∈(1,+∞)上是单调增函数.
(II)∵f(e1-2x)=lne1-2x=1-2x,
∴原不等式即为m2-2bm-2≥1-(x-1)2在b∈[-1,1]时恒成立.
∵1-(x-1)2的最大值为1,∴m2-2bm-3≥0在b∈[-1,1]时恒成立.
令Q(b)=m2-2bm-3,则Q(-1)≥0,且Q(1)≥0.
由Q(-1)≥0,m2+2m-3≥0,解得m≥1或m≤-3.
由Q(1)≥0,m2-2m-3≥0,解得m≥3或m≤-1.
∴综上得,m≥3或m≤-3.
点评:本题考查利用导数研究函数的单调性、最值及恒成立问题,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•如东县三模)函数y=loga(x-1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中mn>0,则
1
m
+
2
n
的最小值为
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•如东县三模)(理)若直线y=kx+1与圆x2+y2+kx+my-4=0交于M、N两点,并且M、N关于直线x+y=0对称,则不等式组
kx-y+1≥0
kx-my≤0
y≥0
表示的平面区域的面积是
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•如东县三模)设sinα=
3
5
π
2
<a<π
),tan(π-β)=
1
2
,则tan(α-2β)的值为
7
24
7
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•如东县三模)(文)不等式组
y≤x+1
y≥0
x+y≤0
表示的平面区域的面积是
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•如东县三模)设函数f(x)的定义域为R,若存在常数k>0,使|f(x)|≤
k
2010
|x|对一切实数x均成立,则称f(x)为“诚毅”函数.给出下列函数:
①f(x)=x2;  
②f(x)=sinx+cosx;  
③f(x)=
x
x2+x+1
;  
④f(x)=3x+1;
其中f(x)是“诚毅”函数的序号为

查看答案和解析>>

同步练习册答案