精英家教网 > 高中数学 > 题目详情

已知双曲线数学公式(a>0,b>0)的离心率e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,则k1•k2的值为


  1. A.
    2
  2. B.
    3
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:设出M、N、P,表示出k1•k2,M、N、P代入双曲线方程并化简,代入双曲线的离心率乘积,求出k1•k2的值.
解答:因为过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,
所以A、B关于原点对称,
设M(p,q),N(-p,-q),P(s,t),
则有k1•k2==

两式相等得:
=
k1•k2====22-1=3.
故选B.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质,考查转化思想,化简得到 K1•K2是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为(    )

A.30°             B.45°              C.60°               D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为(    )

A.30°                B.45°                   C.60°                  D.90°

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:选择题

已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为(  )

(A) -=1 (B) -=1

(C) -=1 (D) -=1

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三联合考试数学文卷 题型:填空题

已知双曲线a>0,b>0)的左右焦点分别为F1 F2 ,P 是双曲线上的一点,且P F1⊥P F2, 的面积为2 ab,则双曲线的离心率 e=________.

 

查看答案和解析>>

科目:高中数学 来源:2013届吉林省高二上学期期末考试理科数学 题型:选择题

已知双曲线(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(    )

(A)    (B)     (C) (D)

 

查看答案和解析>>

同步练习册答案