精英家教网 > 高中数学 > 题目详情
如图,以等腰三角形ABC的斜边BC上的高AD位折痕,将△ABD和△ACD折起,使折起后的△ABC成等边三角形,则二面角C-AB-D的余弦值等于(  )
分析:设AB中点为E,AD=a,连接CE,DE,则∠CED为所求二面角,证明CD⊥DE,即可求得二面角C-AB-D的余弦值.
解答:解:设AB中点为E,AD=a,连接CE,DE,
∵AD=DB,CA=CB
∴AB⊥DE,AB⊥CE
∴∠CED为所求二面角,
∵AD=a,∴DE=
2
2
a,CE=
3
2
AB=
6
2
a,CD=a,
∴CE2=CD2+DE2
∴CD⊥DE
∴cos∠CED=
DE
CE
=
2
2
a
6
2
a
=
3
3

故选D.
点评:本题考查面面角,考查学生的计算能力,正确作出面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
BD
AC
≠0

②∠BAC=60°;
③三棱锥D-ABC是正三棱锥;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正确的是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:

       ①

       ②∠BAC=60°;

       ③三棱锥D—ABC是正三棱锥;

       ④平面ADC的法向量和平面ABC的法向量互相垂直.

       其中正确的是                                                    (    )

       A.①②          B.②③              C.③④            D.①④

查看答案和解析>>

科目:高中数学 来源:2013届辽宁省开原市高二第三次月考理科数学 题型:选择题

如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,将ΔABD和ΔACD折起,使折起后的ΔABC成等边三角形,则二面角C-AB-D的余弦值等于             (    )

A.            B.      C.              D.

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:选择题

如图,以等腰三角形ABC的斜边BC上的高AD位折痕,将△ABD和△ACD折起,使折起后的△ABC成等边三角形,则二面角C-AB-D的余弦值等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:选择题

如图,以等腰三角形ABC的斜边BC上的高AD位折痕,将△ABD和△ACD折起,使折起后的△ABC成等边三角形,则二面角C-AB-D的余弦值等于( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案