精英家教网 > 高中数学 > 题目详情
12、过抛物线y2=8x的焦点F的直线交抛物线于A、B两点,过原点O作OM⊥AB,垂足为M,则点M的轨迹方程是
x2+y2-2x=0
分析:根据题意画出图形,由题中条件:“OM⊥AB,”从而得出点M的轨迹是以OF为直径的圆,依据其圆心(1,0),半径为1.
写出其方程即可求得点P的轨迹方程.
解答:解:如图,∵OM⊥AB,
∴∠OMF=90°,
∴点M的轨迹是以OF为直径的圆,其圆心(1,0),半径为1.
其方程为:x2+y2-2x=0.
故答案为:x2+y2-2x=0.
点评:本题主要考查了圆锥曲线的轨迹问题、抛物线的标准方程和抛物线与其他圆锥曲线的关系.考查了学生分析和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、过抛物线y2=8x的焦点,作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,则|AB|长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+
y2
b2
=1
过抛物线y2=8x的焦点,且与双曲线x2-y2=1有相同的焦点,则该椭圆的方程为
x2
4
+
y2
2
=1
x2
4
+
y2
2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)过抛物线y2=8x的焦点作弦AB,点A(x1,y1),B(x2,y2),且x1+x2=10,则|AB|=
14
14

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=8x的焦点F的直线交抛物线于A,B两点,O为坐标原点,若|BF|=3,则△AOB的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆C:
x2
m2
+
y2
n2
=1
过抛物线y2=8x的焦点,且与双曲线x2-y2=-1有相同的焦点,则该椭圆的方程是(  )

查看答案和解析>>

同步练习册答案