精英家教网 > 高中数学 > 题目详情
已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,
(1)求证对m∈R,直线l和圆C总相交;
(2)设直线l和圆C交于A、B两点,当|AB|取得最大值时,求直线l的方程.
分析:(1)利用点到直线的距离公式求得圆心C到直线l的距离小于半径,从而证明直线l和圆C总相交.
解法二:利用直线l:mx-y+1-m=0恒过过定点P(1,1),可判明在圆内,即可证明直线l和圆C总相交.
(2)根据当圆心到直线的距离d最小时,弦长|AB|最大,而m=0时d最小,从而得到直线l的方程.
解答:证明:(1)因圆C的圆心为C(0,1),半径r=
5

所以圆心C到直线l的距离为d=
|m|
1+m2
|m|
|m|
=1
,故直线l和圆C总相交,命题得证.
解法二:直线l:mx-y+1-m=0恒过过定点P(1,1),可判明在圆内,即可证明直线l和圆C总相交.
(2)当d最小时,|AB|最大,而m=0时d最小,此时l过圆心(1,1),
直线l:mx-y+1-m=0 即 y=1.
点评:本题主要考查直线和圆相交的性质,直线过定点问题以及点到直线的距离公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:直线l恒过定点;
(2)设l与圆交于A、B两点,若|AB|=
17
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-3)2=4,一动直线l过A (-1,O)与圆C相交于P、Q两点,M是PQ中点,l与直线x+3y+6=0相交于N,则|AM|•|AN|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-2)2=1
(1)求与圆C相切且在坐标轴上截距相等的直线方程;
(2)和圆C外切且和直线y=1相切的动圆圆心轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:对m∈R,直线l与C总有两个不同的交点;
(2)设l与C交于A、B两点,若|AB|=
17
,求l的方程;
(3)设l与C交于A、B两点且kOA+kOB=2,求直线l的方程.

查看答案和解析>>

同步练习册答案