如图,在三棱锥
中
底面![]()
点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;
(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;
(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
![]()
(Ⅰ)略
(Ⅱ)
与平面
所成的角的大小![]()
(Ⅲ)存在点E使得二面角
是直二面角.
【解析】【解法1】本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
又
,∴AC⊥BC.
∴BC⊥平面PAC. ……………4分
(Ⅱ)∵D为PB的中点,DE//BC,
∴
,
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,……………6分
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
,
∴在Rt△ABC中,
,∴
.
∴在Rt△ADE中,
,
∴
与平面
所成的角的大小
……………8分.
(Ⅲ)∵DE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
平面PAC,PE
平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角
的平面角, ……………10分
∵PA⊥底面ABC,∴PA⊥AC,∴
.
∴在棱PC上存在一点E,使得AE⊥PC,这时
,
故存在点E使得二面角
是直二面角. ……………12分
【解法2】如图,以A为原煤点建立空间直角坐标系
,
设
,由已知可得
.……………2分
(Ⅰ)∵
,
∴
,∴BC⊥AP.
又∵
,∴BC⊥AC,∴BC⊥平面PAC.
……………4分
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,
∴
,
∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角, ……………6分
∵
,∴
.
∴
与平面
所成的角的大小
……………8分
(Ⅲ)解法同一 (略)
科目:高中数学 来源: 题型:
(本小题共14分)如图,在三棱锥
中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年河北省高三第一次模拟考试理科数学试卷(解析版) 题型:解答题
如图,在三棱锥
中,
(1)求证:平面
⊥平面![]()
(2)求直线PA与平面PBC所成角的正弦值;
(3)若动点M在底面三角形ABC上,二面角M-PA-C的余弦值为
,求BM的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三第一学期期末考试理科数学 题型:解答题
. (本小题满分10分)如图,在三棱锥
中,
底面
,点
,
分别在棱
上,且![]()
(Ⅰ)求证:
平面
;
(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;
(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理
由.
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学理卷 题型:解答题
(本小题满分12分)
如图,在三棱锥
中,
底面ABC,
,
AP=AC, 点
,
分别在棱
上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面
;
(Ⅱ)当二面角
为直二面角时,求多面体ABCED与PAED的体积比。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com