精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系中,已知函数y=loga(x-3)+2(a>0,且a≠1)过定点P,且角α的终边过点P,始边是以x正半轴为始边,则3sin2α+cos2α的值为$\frac{6}{5}$.

分析 由loga1=0(a>0,且a≠1)恒成立,可得P点坐标,进而求出sinα=$\frac{\sqrt{5}}{5}$,结合二倍角公式,化简3sin2α+cos2α为1+sin2α,代入可得答案.

解答 解:令x-3=1,则x=4,y=loga1+2=2,
故P点坐标为(4,2),
则sinα=$\frac{\sqrt{5}}{5}$,
∴3sin2α+cos2α=1+sin2α=$\frac{6}{5}$,
故答案为:$\frac{6}{5}$

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}{x^2}$+|x+1-2a|,其中a是实数.
(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)当x∈[-1,1]时,f(x)的最小值为$\frac{1}{2}{a^2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.“函数f(x)在R上单调递减”是“f′(x)<0在R上恒成立”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点A(-1,2)关于直线x+y-3=0的对称点B的坐标是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]
(Ⅰ)求频率分布图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)求出本次评分的众数、中位数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的方程${({\frac{3}{2}})^x}=\frac{2+3a}{5-a}$有非负根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线的焦距为2$\sqrt{3}$,焦点到一条渐近线的距离为$\sqrt{2}$,则双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-y2=1
C.x2-$\frac{{y}^{2}}{2}$=1或y2-$\frac{{x}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-y2=1或$\frac{{y}^{2}}{2}$-x2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线y=1与曲线y=x2-|x|+a有四个交点.
(1)求证:f(x)=x2-|x|+a为偶函数.
(2)求当x≥0时,f(x)的解析式,并作出符合已知条件的函数f(x)图象.
(3)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=sin($\frac{π}{3}$+2x)+cos(2x-$\frac{π}{6}$).
(1)化简函数为y=Asin(ωx+φ)的形式;
(2)求函数的周期及单调增区间;
(3)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$],求函数的最大值和最小值.

查看答案和解析>>

同步练习册答案