精英家教网 > 高中数学 > 题目详情
精英家教网如图,平面AC⊥平面AE,且四边形ABCD与四边形ABEF都是正方形,则异面直线AC与BF所成角的大小是
 
分析:以A为坐标原点,AF,AB,AD方向分别为X,Y,Z轴正方向建立空间坐标系,设正方形ABCD与正方形ABEF的边长均为1,求出异面直线AC与BF的方向向量,代入向量夹角公式,即可求出答案.
解答:解:以A为坐标原点,AF,AB,AD方向分别为X,Y,Z轴正方向建立空间坐标系
设正方形ABCD与正方形ABEF的边长均为1
则A(0,0,0),B(0,1,0),C(0,1,1),F(1,0,0)
AC
=(0,1,1),
BF
=(1,-1,0)
设异面直线AC与BF所成角为θ,
则cosθ=|
AC
BF
|
AC
|•|
BF
|
|=
1
2

∴θ=60°
故答案为:60°
点评:本题考查的知识点是异面直线及其所成的角,其中构造空间直角坐标系,将异面直线夹角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.
(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;
(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年厦门外国语学校模拟文)(12分)如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且,G是EF的中点,               

(Ⅰ)求证平面AGC⊥平面BGC;

(Ⅱ)求GB与平面AGC所成角正弦值;               

(Ⅲ)求二面角B―AC―G的平面角的正弦值

 

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高一下学期期中考试数学试卷(解析版) 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省三明市高二(上)段考数学试卷(理科)(解析版) 题型:填空题

如图,平面AC⊥平面AE,且四边形ABCD与四边形ABEF都是正方形,则异面直线AC与BF所成角的大小是   

查看答案和解析>>

同步练习册答案