精英家教网 > 高中数学 > 题目详情
椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近的端点的距离是
10
-
5
,则此椭圆的方程是:
 
分析:根据F与短轴的两个端点B1,B2的连线互相垂直,判定b与c的关系,再根据焦点与较近长轴端点的距离是a-c,求出a、b即可.
解答:解:设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0)
由于一个焦点与短轴两端点的连线互相垂直,则b=c
又由这个焦点到长轴上较近的端点的距离是
10
-
5

故a-c=
10
-
5

∵a2=b2+c2
∴a=
10
,b=c=
5

∴椭圆的方程为:
x2
10
+
y2
5
=1

故答案为:
x2
10
+
y2
5
=1
点评:本题考查椭圆的标准方程及性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:山东省济宁市2012届高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

点,左焦

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

同步练习册答案