精英家教网 > 高中数学 > 题目详情
7.将参加数学竞赛的1000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50部分,如果第一部分的编号为0001,0002,0003,…,0020,从第一部分随机抽取一个号码为0015,则被抽取的第40个号码为(  )
A.0040B.0795C.0815D.0420

分析 求出样本间隔即可得到结论.

解答 解:样本间隔为1000÷50=20,
若从第一部分随机抽取一个号码为0015,
则被抽取的第40个号码为15+20×39=795,
即第40个号码为0795,
故选:B

点评 本题主要考查系统抽样的应用,求出样本间隔是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知直线l经过点P($\frac{1}{2}$,1),倾斜角α=$\frac{π}{6}$,则直线l的参数方程$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t是参数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对具有相关关系的两个变量统计分析的一种常用的方法是(  )
A.回归分析B.相关系数分析C.残差分析D.相关指数分析

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将二次函数y=ax2+bx+c的图象C关于x轴对称,并将图象C及其对称图象以相反方向分别水平移动5个单位,设所得图象的函数解析式分别为y=f(x)与y=g(x),那么下列关于y=f(x)+g(x)的描述中,正确的是(  )
A.与x轴相切的抛物线B.与x轴相交的抛物线
C.一条水平直线D.一条不是水平的直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.宜昌市“天地杯”首届中小学生汉语言文化知识电视大赛中,我校经过预赛、复赛、决赛的一路打拼,最终荣获全市一等奖的优异成绩.为选拔选手参加“汉语言文化知识电视大赛”,我校举行了一次“预选赛”活动.为了了解本次预选赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中的x、y的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取4名学生参加“汉语言文化知识电视大赛”,求所抽取的4名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的首项a1=2,且an+1=3an-t(n-1)(t∈R),若数列{bn}前n项和为Tn=-n2,且an+1+bn+1=3(an+bn)对任意的n∈N*恒成立.
(1)求t的值;
(2)设数列{anbn+bn2}的前n项和为Sn,问是否存在互不相等且大于2的正整数m,k,r,使得m,k,r成等差数列的同时Sm+1,Sk+1,Sr+1成等比数列?若存在,求出m,k,r的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项为和Sn,且有Sn=$\frac{1}{2}$n2+$\frac{11}{2}$n,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=$\frac{3}{(2{a}_{n}-11)(2{b}_{n}-1)}$,数列{cn}的前n项和为Tn,求使得不等式Tn>$\frac{k}{25}$对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察图:

则第1008行的各数之和等于20152

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.运行如下程序框图,如果输入的t∈[-1,3],则输出s属于(  )
A.[-4,3]B.[-5,2]C.[-3,4]D.[-2,5].

查看答案和解析>>

同步练习册答案