精英家教网 > 高中数学 > 题目详情
19.已知抛物线C:y2=4x,直线l:y=-x+b与抛物线交于A,B两点.
(Ⅰ)若|AB|=8,求b的值;
(Ⅱ)若以AB为直径的圆与x轴相切,求该圆的方程.

分析 (Ⅰ)由抛物线C:y2=4x,直线l:y=-x+b得y2+4y-4b=0,利用|AB|=8,即可求b的值;
(Ⅱ)若以AB为直径的圆与x轴相切,求出M的坐标,即可求该圆的方程.

解答 解:(Ⅰ)设A(x1,y1),B(x2,y2),由抛物线C:y2=4x,直线l:y=-x+b得y2+4y-4b=0-----(2分)
∴|AB|=$\sqrt{1+\frac{1}{{k}^{2}}}$|y1-y2|=$\sqrt{2}•\sqrt{16+16b}$=$\sqrt{32(b+1)}$=8------------(5分)
解得b=1----------(7分)
(Ⅱ)以AB为直径的圆与x轴相切,设AB中点为M
|AB|=|y1+y2|又y1+y2=-4----------(9分)
∴4=$\sqrt{32(b+1)}$解得b=-$\frac{1}{2}$,则M($\frac{3}{2}$,-2)---------(12分)
∴圆方程为(x-$\frac{3}{2}$)2+(y+2)2=4---------(14分)

点评 本题考查直线与抛物线的位置关系,考查圆的方程,考查韦达定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是等差数列,其首项为2,且公差为2,若${b_n}={2^{a_n}}$(n∈N*).
(1)求证:数列{bn}是等比数列;
(2)设cn=an+bn,求数列{cn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为(  )
A.120B.40C.30D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果关于x的不等式x2<ax+b的解集是{x|1<x<3},那么ba等于(  )
A.-81B.81C.-64D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得未溶解糖块的质量为3.5克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数S=ae-kt(a,k是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量.
(1)a=7;
(2)求k的值;
(3)设这个实验中t分钟末已溶解的糖块的质量为M,请画出M随t变化的函数关系的草图,并简要描述实验中糖块的溶解过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.四棱锥P-ABCD中,△PCD为正三角形,底面边长为1的正方形,平面PCD⊥平面ABCD,M为底面内一动点,当$MA=\sqrt{2}PM$时,点M在底面正方形内(包括边界)的轨迹为(  )
A.一个点B.线段C.D.圆弧

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=16及圆内一点F(-3,0),过F任作一条弦AB.
(1)求△AOB面积的最大值及取得最大值时直线AB的方程;
(2)若点M在x轴上,且使得MF为△AMB的一条内角平方线,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求证:{an+1-an}是等差数列;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某飞机失联,经卫星侦查,其最后出现在小岛O附近.现派出四艘搜救船A,B,C,D,为方便联络,船A,B始终在以小岛O为圆心,100海里为半径的圆上,船A,B,C,D构成正方形编队展开搜索,小岛O在正方形编队外(如图).设小岛O到AB的距离为x,∠AOB=α,D船到小岛O的距离为d.
(1)请分别求d关于x,α的函数关系式d=g(x),d=f(α);并分别写出定义域;
(2)当A,B两艘船之间的距离是多少时搜救范围最大(即d最大).

查看答案和解析>>

同步练习册答案