精英家教网 > 高中数学 > 题目详情

【题目】某地政府在该地一水库上建造一座水电站,用泄流水量发电,如图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X∈[0,120],历年中日泄流量在区间[30,60)的年平均天数为156天,一年按364天计.
(1)请把频率直方图补充完整;
(2)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才能够运行一台发电机,如60≤X<90时才够运行两台发电机,若运行一台发电机,每天可获利润4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据.问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?

【答案】
(1)解:在区间[30,60)的频率为

= =

设在区间[0,30)上, =a,

则(a+ )×30=1,

解得a=

补充频率分布直方图如右图所示.


(2)解:记水电站日利润为Y元.由(Ⅰ)知:不能运行发电机的概率为

恰好运行一台发电机的概率为 ,恰好运行二台发电机的概率为

恰好运行三台发电机的概率为

①若安装1台发电机,则Y的值为﹣500,4000,其分布列为:

Y

﹣500

4000

P

E(Y)=﹣500× +4000× =

②若安装2台发电机,则Y的值为﹣1000,3500,8000,其分布列为:

Y

﹣1000

3500

8000

P

E(Y)=﹣1000× +3500× +8000× =

③若安装3台发电机,则Y的值为﹣1500,3000,7500,12000,其分布列为

Y

﹣1500

3000

7500

12000

P

E(Y)=﹣1500× +3000× +7500× +12000× =

∴要使水电站日利润的期望值最大,该水电站应安装3台发电机.


【解析】(Ⅰ)设在区间[0,30)上, =a,由频率分布直方图的性质求出a= ,由此能补充完整频率分布直方图.(Ⅱ)记水电站日利润为Y元.不能运行发电机的概率为 ,恰好运行一台发电机的概率为 ,恰好运行二台发电机的概率为 ,恰好运行三台发电机的概率为 ,分别求出安装1台发电机、安装2台发电机、安装3台发电机的数学期望,由此得到要使水电站日利润的期望值最大,该水电站应安装3台发电机.
【考点精析】解答此题的关键在于理解频率分布直方图的相关知识,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣ 2+(y﹣1)2=1和两点A(﹣t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则当t取得最大值时,点P的坐标是( )
A.(
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:存在向量 ,使得 =| || |,命题q:对任意的向量 ,若 = ,则 = .则下列判断正确的是(
A.命题p∨q是假命题
B.命题p∧q是真命题
C.命题p∨(¬q)是假命题
D.命题p∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一块边长为6cm的正方形纸片,先按如图1所示的阴影部分截去四个全等的等腰三角形,然后将剩余部分沿虚线折叠并拼成一个正四棱锥模型(底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥),将该四棱锥如图2放置,若其正视图为正三角形,则其体积为cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 为实数,函数 的导函数为 ,且 是偶函数, 则曲线: 在点 处的切线方程为( )
A.
B.

C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数G(x)=xlnx+(1﹣x)ln(1﹣x).
(1)求G(x)的最小值:
(2)记G(x)的最小值为e,已知函数f(x)=2aex+1+ ﹣2(a+1)(a>0),若对于任意的x∈(0,+∞),恒有f(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为(
A.1200
B.2400
C.3000
D.3600

查看答案和解析>>

同步练习册答案