精英家教网 > 高中数学 > 题目详情

,函数.

(Ⅰ)当时,求函数的单调增区间;

(Ⅱ)若时,不等式恒成立,实数的取值范围.

同下


解析:

(1)当时,

              …………(2分)

时,内单调递增;

时,恒成立,故内单调递增;

的单调增区间为。                              …………(6分)

(2)①当时,

恒成立,上增函数。

故当时,。                             …………(8分) 

②当时,

(Ⅰ)当,即时,时为正数,所以在区间上为增函数。故当时,,且此时           …………(10分)          

(Ⅱ)当,即时,时为负数,在时为正数,所以在区间上为减函数,在上为增函数。故当时,,且此时。                        …………(12分)

(Ⅲ)当,即时,进为负数,所以在区间上为减函数,故当时,。                           …………(14分)

所以函数的最小值为

由条件得此时;或,此时;或,此时无解。

综上,。                                            …………(16分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[
1
2
,2]时,函数f(x)=x+
1
x
1
c
 恒成立,如果p∨q为真命题,p∧q为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]f(x)的图象如图,则不等式f(x)≤0解集是
[-2,0]∪[2,5]
[-2,0]∪[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m元(m为常数,且2≤m≤3),设每个水杯的出厂价为x元(35≤x≤41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.
(Ⅰ)求该工厂的日利润y(元)与每个水杯的出厂价x(元)的函数关系式;
(Ⅱ)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都三模)设奇函数f(x)=ax3+bx2+cx+d的图象在P(1,f(1))处的切线的斜率为-6.且x=2时,f(x)取得极值.
(1)求实数a、b、c、d的值;
(2)设函数f(x)的导函数为f'(x),函数g(x)的导函数g′(x)=-
12
f′(x)+4mx-3mx2-4
,m∈(0,1),求函数g(x)的单调区间;
(3)在(2)的条件下,当x∈[m+1,m+2]时,|g'(x)|≤m恒成立,试确定m的取值范围.

查看答案和解析>>

同步练习册答案