精英家教网 > 高中数学 > 题目详情

(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为      

(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围        

 

【答案】

   (Ⅱ)

【解析】

试题分析:解:将直线2ρcosθ=1化为普通方程为:2x=1.∵ρ=2cosθ,∴ρ2=2ρcosθ,化为普通方程为:x2+y2=2x,即(x-1)2+y2=1.∴直线与圆相交的弦长=

解:∵函数f(x)=|x-4|+|x-a|≥|x-4+a-x|=|a-4|,∵f(x)的最小值为3,∴|a-4|=3,∴a=1或7,∵a>1,∴a=7,∴f(x)=|x-4|+|x-7|≤5,①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;

综上3≤x≤8,故答案为:3≤x≤8.

考点:坐标系与参数方程,不等式选讲

点评:主要是考查了不等式选讲以及坐标系与参数方程的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
12
01
]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上一点,求它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城三模)选修4-4:坐标系与参数方程:
在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=3
2
和ρsin2θ=8cosθ,直线l与曲线C交于点A、B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4--4;坐标系与参数方程
已知动点P,Q都在曲线C:
x=2cosβ
y=2sinβ
(β为参数)
上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.
(Ⅰ)求M的轨迹的参数方程
(Ⅱ)将M到坐标原点的距离d表示为a的函数,并判断M的轨迹是否过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(I)、(II)、(III)三个选作题,每题7分,请考生任选两题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知a∈R,矩阵P=
02
-10
,Q=
01
a0
,若矩阵PQ对应的变换把直线l1:x-y+4=0变为直线l2:x+y+4=0,求实数a的值.
(2)选修4-4:坐标系与参数方程
在极坐标系中,求圆C:ρ=2上的点P到直线l:ρ(cosθ+
3
sinθ)=6
的距离的最小值.
(3)选修4-5:不等式选讲
已知实数x,y满足x2+4y2=a(a>0),且x+y的最大值为5,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C1的参数方程为
x=2cosα
y=sinα
(α为参数),直线l的参数方程为
x=-
3
+t
y=
3
t
(t为参数).以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C2的极坐标方程为ρ=asinθ(a>0).
(1)当直线l与曲线C2相切时求a的值;
(2)求直线l被曲线C1所截得的弦长.

查看答案和解析>>

同步练习册答案