精英家教网 > 高中数学 > 题目详情

已知奇函数f(x)列任意的正实数x1,x2(x1≠x2),恒有(   )  (x1-x2)( (x1)-f(x2)>0),则一定正确的是

A.f(4)>f(一6)                            B.f(一4)<f(一6)

C.f(一4)>f(一6)                          D.f(4)<f(一6)

 

【答案】

C

【解析】

试题分析:该题考查抽象函数的运算,显然(4—6)())>0<,结合奇函数的定义,得—=,一=,故>,故选C

考点:函数的奇偶性

点评:解决的关键是利用奇偶性和该函数的单调性来进行大小比较,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将正奇数列{2n-1}中的所有项按每一行比上一行多一项的规则排成如下数表:
记aij是这个数表的第i行第j列的数.例如a43=17
(Ⅰ)  求该数表前5行所有数之和S;
(Ⅱ)2009这个数位于第几行第几列?
(Ⅲ)已知函数f(x)=
3x
3n
(其中x>0),设该数表的第n行的所有数之和为bn
数列{f(bn)}的前n项和为Tn,求证Tn
2009
2010

查看答案和解析>>

科目:高中数学 来源: 题型:

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

科目:高中数学 来源: 题型:

16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,

这时函数g(x)只有两个零点,所以(1)不对

(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点

(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)

一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半,现在从该盒中随机取出一球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数Y的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知奇函数f(x)列任意的正实数x1,x2(x1≠x2),恒有  (x1-x2)( (x1)-f(x2)>0),则一定正确的是


  1. A.
    f(4)>f(一6)
  2. B.
    f(一4)<f(一6)
  3. C.
    f(一4)>f(一6)
  4. D.
    f(4)<f(一6)

查看答案和解析>>

同步练习册答案