精英家教网 > 高中数学 > 题目详情
圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G 是何种曲线之间的关系是:
 

圆M与的位置 相离 相切 相交
G 是何种曲线
分析:过A、B分别向相应的准线作垂线AA',BB',由第二定义得
|AF|+|BF|
2
=
|AA′|+|BB′|
2
 • e
,r=de,0<e<1,此时r<d,圆M与准线相离; e=1,此时r=d,圆M与准线相切;e>1,此时r>d,圆M与准线相交.
解答:解:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',
则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴
|AF|+|BF|
2
=
|AA′|+|BB′|
2
 • e

设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,
椭圆的离心率  0<e<1,此时r<d,圆M与准线相离;抛物线的离心率 e=1,此时r=d,圆M与准线相切;
双曲线的离心率 e>1,此时r>d,圆M与准线相交.
故答案为:椭圆、抛物线、双曲线.
点评:本题考查圆锥曲线的第二定义,梯形的中位线的性质,体现了分类讨论的数学思想,得到r=de 是解题的关键点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G 是何种曲线之间的关系是:______
圆M与的位置 相离 相切 相交
G 是何种曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G 是何种曲线之间的关系是:______
圆M与的位置 相离 相切 相交
G 是何种曲线

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省常州市奔牛高级中学高二(上)数学寒假作业4(理科)(解析版) 题型:填空题

圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G 是何种曲线之间的关系是:   
圆M与的位置相离相切相交
G 是何种曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥曲线G的一个焦点是F,与之对应的准线是l,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与l的位置关系决定G是何种曲线之间的关系是:

圆M与l的位置

相离

相切

相交

G是何种曲线

 

 

 

查看答案和解析>>

同步练习册答案