精英家教网 > 高中数学 > 题目详情
若(1-x)(x+1)6的展开式中x2项的系数为a,x项的系数为b,则a与b的等比中项为
±3
5
±3
5
分析:求出x2项的系数a=
C
2
6
-
C
1
6
=9
,x项的系数b=
C
1
6
-1
=5,由等比中项的定义求得a与b的等比中项.
解答:解:由于x2项的系数a=
C
2
6
-
C
1
6
=9
,x项的系数b=
C
1
6
-1
=5,所以a与b的等比中项为±
9×5
=±3
5

故答案为 ±3
5
点评:本题主要考查二项式定理的应用,求展开式中某项的系数,等比中项的定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1-|x-1|,x∈[0,2]
1
2
(x-2),x∈[2,+∞)
,则下列说法中正确的是
②④
②④
(只写序号)
①函数y=f(x)-ln(x+1)有3个零点;
②若x>0,时,函数f(x)≤
k
x
恒成立,则实数k的取值范围是[
3
2
,+∞);
③函数f(x)的极大值中一定存在最小值;
④f(x)=2kf(x+2k),(k∈N),对于一切x∈[0,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为D的函数y=f(x),若对于任意x∈D,存在正数K,都有|f(x)|≤K|x|成立,那么称函数y=f(x)是D上的“倍约束函数”,已知下列函数:
①f(x)=2x;
②f(x)=2sin(x+
π
4
);     
③f(x)=x3-2x2+x;    
④f(x)=
x2
x2+x+1

其中是“倍约束函数”的是
①④
①④
.(将你认为正确的函数序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=(x+1)n(其中n∈N+).
(1)若f(x)=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,求a0及Sn=a1+a2+a3+…+an
(2)当n=2013,计算:
C
1
2013
-2
C
2
2013
+…+k
C
k
2013
(-1)k-1+…+2013
C
2013
2013
(-1)2012

查看答案和解析>>

同步练习册答案