分析 (1)因为a=1时,f(x)=ex-x-2,所以f'(x)=ex-1,f'(0)=-1,代入点斜式方程,求出切线方程即可;
(2)f(x)<0对任意x>0恒成立,分离参数构造函数,利用导数求出函数的最小值,即可求出k的最大值.
解答 解:(1)当k=1时,f(x)=(1-x)ex-x-3,
∴f′(x)=-xex-1
则f'(0)=-1,f(0)=-2,
∴f(x)在(0,f(0))处的切线方程为y-(-2)=-1×(x-0),
即x+y+2=0.
(2)(k-x)ex-x-3<0对任意x>0恒成立$?k<x+\frac{x+3}{e^x}$对任意x>0恒成立$?k<{({x+\frac{x+3}{e^x}})_{min}}$,
令$h(x)=x+\frac{x+3}{e^x}({x>0})$,
则$h'(x)=1+\frac{-x-2}{e^x}=\frac{{{e^x}-x-2}}{e^x}$.
令φ(x)=ex-x-2,则φ'(x)=ex-1>0,
∴φ(x)在(0,+∞)上单调递增,
又φ(1)=e-3<0,$φ({\frac{3}{2}})={e^{\frac{3}{2}}}-\frac{7}{2}>0$,
∴存在${x_0}∈({1,\frac{3}{2}})$使得φ(x0)=0,其中h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
∴$h{(x)_{min}}=h({x_0})={x_0}+\frac{{{x_0}+3}}{{{e^{x_0}}}}$,
又φ(x0)=0,即${e^{x_0}}-{x_0}-2=0$,
∴${e^{x_0}}={x_0}+2$,
∴$h{(x)_{min}}=h({x_0})={x_0}+\frac{{{x_0}+3}}{{{e^{x_0}}}}={x_0}+\frac{{{x_0}+3}}{{{x_0}+2}}=1+{x_0}+\frac{1}{{{x_0}+2}}$,
∵${x_0}∈({1,\frac{3}{2}})$,h′(x0)=1-$\frac{1}{({x}_{0}+2)^{2}}$>0,即h(x0)递增,
∴h(1)<h(x0)<h($\frac{3}{2}$),
∴$\frac{7}{3}$<h(x0)<$\frac{39}{14}$,
∵k∈Z,
∴k≤2,
∴k的最大值为2.
点评 本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题时构造函数是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | log34 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com